Tag Archives: electric brake vacuum pump

China OEM 5.5kw 7.5HP 380V 400V High Power Induction AC Electric Brake Motors vacuum pump design

Product Description

5.5kw 7.5HP 380V 400v High Power Induction AC Electric brake Motors

Specification

Company Overview

 
HISTORY: Greensky is a mechanical brand of CHINAMFG Power Co., Ltd. With over 10 years'
mechanical manufacturing experiences, CHINAMFG Power always strictly stands on the
principle of Best Customer Satisfaction.

QUALITY: Material Inspection, Production Control, Finished Goods Test, Pre-dellivery Inspection

MISSION: "Once and forever" is our goal to serve customers in the world. Once we do
business with customer, we will do business forever.

MARKET30 different countries, mainly Germany, Austria, Japan, USA and Middle-East.

DELIVERY100% on-time delivery Guaranteed.

SERVICESFast response in English, German, Japanese and Chinese languages.

OEMCustomized orders are welcome at CHINAMFG Power.
  

Certificates

Exhibitions

Greensky Product Portfolio: 

FAQ

1 Q: What's your MOQ?
   A: 1unit is ok for different types. 

2 Q: What about your warranty?
   A: One year.

3 Q: Do you provide OEM service with customer-logo?
   A: Yes, we could do OEM orders, but we mainly focus on our own brand.

4 Q: How about your payment terms ?
   A: TT, western union and paypal. 100% payment in advanced for orders less $5,000. 30% deposit and balance before delivery for orders over $5,000.

5 Q: How about your packing ?
   A: Carton, Plywood case. If you need more, we can pack all goods with pallet 

Warmly welcome your inquiry and visit our factory in China.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Control
Casing Protection: Protection Type
Number of Poles: 2, 4, 6, 8
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

What safety precautions should be followed when working with brake motors?

Working with brake motors requires adherence to specific safety precautions to ensure the well-being of personnel and the proper functioning of the equipment. Brake motors involve electrical components and potentially hazardous mechanical operations, so it is essential to follow established safety guidelines. Here's a detailed explanation of the safety precautions that should be followed when working with brake motors:

  • Qualified Personnel: Only trained and qualified individuals should be allowed to work with brake motors. They should have a thorough understanding of electrical systems, motor operation, and safety procedures. Proper training ensures that personnel are familiar with the specific risks associated with brake motors and know how to handle them safely.
  • Power Isolation: Before performing any maintenance or repair tasks on a brake motor, it is crucial to isolate the power supply to the motor. This can be achieved by disconnecting the power source and following lockout/tagout procedures to prevent accidental re-energization. Power isolation eliminates the risk of electric shock and allows safe access to the motor without the danger of unexpected startup.
  • Personal Protective Equipment (PPE): When working with brake motors, appropriate personal protective equipment should be worn. This may include safety glasses, gloves, protective clothing, and hearing protection, depending on the specific hazards present. PPE helps safeguard against potential hazards such as flying debris, electrical shocks, and excessive noise, providing an additional layer of protection for personnel.
  • Proper Ventilation: Adequate ventilation should be ensured when working with brake motors, especially in indoor environments. Ventilation helps dissipate heat generated by the motor and prevents the buildup of potentially harmful fumes or gases. Proper ventilation reduces the risk of overheating and improves air quality, creating a safer working environment.
  • Safe Lifting and Handling: Brake motors can be heavy and require proper lifting and handling techniques to prevent injuries. When moving or installing a motor, personnel should use appropriate lifting equipment, such as cranes or hoists, and follow safe lifting practices. It is important to avoid overexertion, use proper body mechanics, and seek assistance when necessary to prevent strains or accidents.
  • Protection Against Moving Parts: Brake motors may have rotating or moving parts that pose a risk of entanglement or crushing injuries. Guards and protective covers should be in place to prevent accidental contact with these hazardous areas. Personnel should never reach into or attempt to adjust the motor while it is in operation or without proper lockout/tagout procedures in place.
  • Maintenance and Inspection: Regular maintenance and inspection of brake motors are essential for their safe and reliable operation. Maintenance tasks should only be performed by qualified personnel following manufacturer recommendations. Before conducting any maintenance or inspection, the motor should be properly isolated and de-energized. Visual inspections, lubrication, and component checks should be carried out according to the motor's maintenance schedule to identify and address any potential issues before they escalate.
  • Follow Manufacturer Guidelines: It is crucial to follow the manufacturer's guidelines and recommendations when working with brake motors. This includes adhering to installation procedures, operating instructions, and maintenance practices specified by the manufacturer. Manufacturers provide specific safety instructions and precautions that are tailored to their equipment, ensuring safe and efficient operation when followed meticulously.
  • Training and Awareness: Ongoing training and awareness programs should be implemented to keep personnel updated on safety practices and potential hazards associated with brake motors. This includes providing clear instructions, conducting safety meetings, and promoting a safety-conscious culture. Personnel should be encouraged to report any safety concerns or incidents to ensure continuous improvement of safety measures.

By following these safety precautions, personnel can mitigate risks and create a safer working environment when dealing with brake motors. Adhering to proper procedures, using appropriate PPE, ensuring power isolation, practicing safe lifting and handling, protecting against moving parts, conducting regular maintenance and inspections, and staying informed about manufacturer guidelines are all crucial steps in maintaining a safe and efficient work environment when working with brake motors.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here's a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

What are the key components of a typical brake motor system?

A typical brake motor system consists of several key components that work together to provide controlled stopping and holding capabilities. These components are carefully designed and integrated to ensure the efficient operation of the brake motor. Here's a detailed explanation of the key components of a typical brake motor system:

1. Electric Motor: The electric motor is the primary component of the brake motor system. It converts electrical energy into mechanical energy to drive the rotation of the equipment. The motor provides the necessary power and torque to perform the desired work. It can be an AC (alternating current) motor or a DC (direct current) motor, depending on the specific application requirements.

2. Braking Mechanism: The braking mechanism is a crucial component of the brake motor system that enables controlled stopping of the rotating equipment. It consists of various types of brakes, such as electromagnetic brakes or spring-loaded brakes. The braking mechanism engages when the power to the motor is cut off or the motor is de-energized, creating friction or applying pressure to halt the rotation.

3. Brake Coil or Actuator: In brake motors with electromagnetic brakes, a brake coil or actuator is employed. The coil generates a magnetic field when an electrical current passes through it, attracting the brake disc or plate and creating braking force. The coil is energized when the motor is powered, and it de-energizes when the power is cut off, allowing the brake to engage and stop the rotation.

4. Brake Disc or Plate: The brake disc or plate is a key component of the braking mechanism. It is attached to the motor shaft and rotates with it. When the brake engages, the disc or plate is pressed against a stationary surface, creating friction and stopping the rotation of the motor shaft. The material composition and design of the brake disc or plate are optimized for efficient braking performance.

5. Control System: Brake motor systems often incorporate a control system that enables precise control over the braking process. The control system allows for adjustable braking torque, response time, and braking profiles. It may include control devices such as switches, relays, or electronic control units (ECUs). The control system ensures the desired level of control and facilitates the integration of the brake motor system with other machinery or automation systems.

6. Power Supply: A reliable power supply is essential for the operation of the brake motor system. The power supply provides electrical energy to the motor and the brake mechanism. It can be a mains power supply or a dedicated power source, depending on the specific requirements of the application and the motor's power rating.

7. Mounting and Housing: Brake motors are typically housed in a sturdy enclosure that protects the components from environmental factors, such as dust, moisture, or vibration. The housing also provides mounting points for the motor and facilitates the connection of external devices or machinery. The design of the mounting and housing ensures the stability and safety of the brake motor system.

8. Optional Accessories: Depending on the application, a brake motor system may include optional accessories such as temperature sensors, shaft encoders, or position sensors. These accessories provide additional functionality and feedback, allowing for advanced control and monitoring of the brake motor system.

These are the key components of a typical brake motor system. The integration and interaction of these components ensure controlled stopping, load holding, and precise positioning capabilities, making brake motors suitable for a wide range of industrial applications.

China OEM 5.5kw 7.5HP 380V 400V High Power Induction AC Electric Brake Motors   vacuum pump design		China OEM 5.5kw 7.5HP 380V 400V High Power Induction AC Electric Brake Motors   vacuum pump design
editor by CX 2024-05-16

China OEM Power Electric Wheelchair 250W*2 High-Power Brushless Motor Carbon Fiber Material Intelligent Brake Foldable vacuum pump ac

Product Description

 

Products Description

Product Paramenters

Properties

Rehabilitation Therapy Supplies

Model Number

BC-EC8002

Type

Electric Wheelchair

Product Name

Foldable Carbon Fiber Electric Wheelchair

Material

Carbon Fiber

Remote Control

Optional

Packing Size

67*38*79cm

Weight

17KG

Certificate

CE ISO13485 ISO9001

Battery

24V 12AH Lithium Battery

Motor

Upgrade aluminum alloy 250W*2 Brushless

Warranty

24 Months

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Certification: ISO, RoHS, CE, FDA 510K
Condition: New
Tilted: Tilted
Folded: Folding
Leg Rest Type: Across Both Sides
Samples:
US$ 970/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

Can brake motors be adapted for use in both indoor and outdoor environments?

Brake motors can indeed be adapted for use in both indoor and outdoor environments, provided they are appropriately designed and protected against the specific conditions they will encounter. The adaptability of brake motors allows them to function effectively and safely in diverse operating environments. Here's a detailed explanation of how brake motors can be adapted for use in both indoor and outdoor settings:

  • Indoor Adaptation: Brake motors intended for indoor use are typically designed to meet the specific requirements of indoor environments. They are often constructed with enclosures that protect the motor from dust, debris, and moisture commonly found indoors. These enclosures can be in the form of drip-proof (DP), totally enclosed fan-cooled (TEFC), or totally enclosed non-ventilated (TENV) designs. The enclosures prevent contaminants from entering the motor and ensure reliable and efficient operation in indoor settings.
  • Outdoor Adaptation: When brake motors are required for outdoor applications, they need to be adapted to withstand the challenges posed by outdoor conditions, such as temperature variations, moisture, and exposure to elements. Outdoor-rated brake motors are designed with additional protective measures to ensure their durability and performance. They may feature weatherproof enclosures, such as totally enclosed fan-cooled (TEFC) or totally enclosed non-ventilated (TENV) enclosures with added gaskets and seals to prevent water ingress. These enclosures provide effective protection against rain, snow, dust, and other outdoor elements, allowing the motor to operate reliably in outdoor environments.
  • Environmental Sealing: Brake motors can be equipped with environmental seals to further enhance their adaptability for both indoor and outdoor use. These seals provide an additional layer of protection against the entry of moisture, dust, and other contaminants. Depending on the specific application requirements, the seals can be applied to the motor's shaft, housing, or other vulnerable areas to ensure proper sealing and prevent damage or performance degradation due to environmental factors.
  • Corrosion Resistance: In certain outdoor environments or specific indoor settings with corrosive elements, brake motors can be designed with corrosion-resistant materials and coatings. These specialized materials, such as stainless steel or epoxy coatings, provide protection against corrosion caused by exposure to moisture, chemicals, or salt air. Corrosion-resistant brake motors are essential for ensuring long-term reliability and optimal performance in corrosive environments.
  • Temperature Considerations: Brake motors must be adapted to handle the temperature ranges encountered in both indoor and outdoor environments. For indoor applications, motors may be designed to operate within a specific temperature range, ensuring reliable performance without overheating. Outdoor-rated brake motors may have additional cooling features, such as oversized cooling fans or heat sinks, to dissipate heat effectively and operate within acceptable temperature limits. Heating elements can also be incorporated to prevent condensation and maintain optimal operating temperatures in outdoor or highly humid indoor environments.
  • IP Rating: In addition to the specific adaptations mentioned above, brake motors for both indoor and outdoor use are often assigned an Ingress Protection (IP) rating. The IP rating indicates the motor's level of protection against solid particles (first digit) and water ingress (second digit). The higher the IP rating, the greater the protection offered. IP ratings help users select brake motors that are suitable for their intended environment by considering factors such as dust resistance, water resistance, and overall environmental durability.

By incorporating appropriate enclosures, environmental seals, corrosion-resistant materials, temperature management features, and IP ratings, brake motors can be successfully adapted for use in both indoor and outdoor environments. These adaptations ensure that the motors are well-protected, perform reliably, and maintain their efficiency and longevity, regardless of the operating conditions they are exposed to.

brake motor

Can you provide examples of machinery or equipment that frequently use brake motors?

In various industrial and manufacturing applications, brake motors are commonly used in a wide range of machinery and equipment. These motors provide braking functionality and enhance the safety and control of rotating machinery. Here are some examples of machinery and equipment that frequently utilize brake motors:

  • Conveyor Systems: Brake motors are extensively used in conveyor systems, where they control the movement and stopping of conveyor belts. They ensure smooth and controlled starting, stopping, and positioning of material handling conveyors in industries such as logistics, warehousing, and manufacturing.
  • Hoists and Cranes: Brake motors are employed in hoists and cranes to provide reliable load holding and controlled lifting operations. They ensure secure stopping and prevent unintended movement of loads during lifting, lowering, or suspension of heavy objects in construction sites, ports, manufacturing facilities, and other settings.
  • Elevators and Lifts: Brake motors are an integral part of elevator and lift systems. They facilitate controlled starting, stopping, and leveling of elevators, ensuring passenger safety and smooth operation in commercial buildings, residential complexes, and other structures.
  • Metalworking Machinery: Brake motors are commonly used in metalworking machinery such as lathes, milling machines, and drilling machines. They enable precise control and stopping of rotating spindles, ensuring safe machining operations and preventing accidents caused by uncontrolled rotation.
  • Printing and Packaging Machinery: Brake motors are found in printing presses, packaging machines, and labeling equipment. They provide controlled stopping and precise positioning of printing cylinders, rollers, or packaging components, ensuring accurate printing, packaging, and labeling processes.
  • Textile Machinery: In textile manufacturing, brake motors are used in various machinery, including spinning machines, looms, and winding machines. They enable controlled stopping and tension control of yarns, threads, or fabrics, enhancing safety and quality in textile production.
  • Machine Tools: Brake motors are widely employed in machine tools such as grinders, saws, and machining centers. They enable controlled stopping and tool positioning, ensuring precise machining operations and minimizing the risk of tool breakage or workpiece damage.
  • Material Handling Equipment: Brake motors are utilized in material handling equipment such as forklifts, pallet trucks, and automated guided vehicles (AGVs). They provide controlled stopping and holding capabilities, enhancing the safety and stability of load transport and movement within warehouses, distribution centers, and manufacturing facilities.
  • Winches and Winders: Brake motors are commonly used in winches and winders for applications such as cable pulling, wire winding, or spooling operations. They ensure controlled stopping, load holding, and precise tension control, contributing to safe and efficient winching or winding processes.
  • Industrial Fans and Blowers: Brake motors are employed in industrial fans and blowers used for ventilation, cooling, or air circulation purposes. They provide controlled stopping and prevent the fan or blower from freewheeling when power is turned off, ensuring safe operation and avoiding potential hazards.

These examples represent just a selection of the machinery and equipment where brake motors are frequently utilized. Brake motors are versatile components that enhance safety, control, and performance in numerous industrial applications, ensuring reliable stopping, load holding, and motion control in rotating machinery.

brake motor

How do brake motors handle variations in load and stopping requirements?

Brake motors are designed to handle variations in load and stopping requirements by incorporating specific features and mechanisms that allow for flexibility and adaptability. These features enable brake motors to effectively respond to changes in load conditions and meet the diverse stopping requirements of different applications. Here's a detailed explanation of how brake motors handle variations in load and stopping requirements:

1. Adjustable Braking Torque: Brake motors often have adjustable braking torque, allowing operators to modify the stopping force according to the specific load requirements. By adjusting the braking torque, brake motors can accommodate variations in load size, weight, and inertia. Higher braking torque can be set for heavier loads, while lower braking torque can be selected for lighter loads, ensuring optimal stopping performance and preventing excessive wear or damage to the braking system.

2. Controlled Response Time: Brake motors provide controlled response times, allowing for precise and efficient stopping according to the application requirements. The response time refers to the duration between the command to stop and the actual cessation of rotation. Brake motors can be designed with adjustable response times, enabling operators to set the desired stopping speed based on the load characteristics and safety considerations. This flexibility ensures that the braking action is appropriately matched to the load and stopping requirements.

3. Dynamic Braking: Dynamic braking is a feature found in some brake motors that helps handle variations in load and stopping requirements. When the motor is de-energized, dynamic braking converts the kinetic energy of the rotating load into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. This braking mechanism allows brake motors to handle different load conditions and varying stopping requirements, dissipating excess energy and bringing the rotating equipment to a controlled stop.

4. Integrated Control Systems: Brake motors often come equipped with integrated control systems that allow for customized programming and adjustment of the braking parameters. These control systems enable operators to adapt the braking performance based on the load characteristics and stopping requirements. By adjusting parameters such as braking torque, response time, and braking profiles, brake motors can handle variations in load and achieve the desired stopping performance for different applications.

5. Monitoring and Feedback: Some brake motor systems incorporate monitoring and feedback mechanisms to provide real-time information about the load conditions and stopping performance. This feedback can include data on motor temperature, current consumption, or position feedback from encoders or sensors. By continuously monitoring these parameters, brake motors can dynamically adjust their braking action to accommodate variations in load and ensure optimal stopping performance.

6. Adaptable Brake Design: Brake motors are designed with consideration for load variations and stopping requirements. The brake design takes into account factors such as braking surface area, material composition, and cooling methods. These design features allow brake motors to handle different load conditions effectively and provide consistent and reliable stopping performance under varying circumstances.

By incorporating adjustable braking torque, controlled response time, dynamic braking, integrated control systems, monitoring and feedback mechanisms, and adaptable brake designs, brake motors can handle variations in load and stopping requirements. These features enhance the versatility and performance of brake motors, making them suitable for a wide range of applications across different industries.

China OEM Power Electric Wheelchair 250W*2 High-Power Brushless Motor Carbon Fiber Material Intelligent Brake Foldable   vacuum pump acChina OEM Power Electric Wheelchair 250W*2 High-Power Brushless Motor Carbon Fiber Material Intelligent Brake Foldable   vacuum pump ac
editor by CX 2024-05-10

China supplier Power Electric Wheelchair 250W*2 High-Power Brushless Motor Carbon Fiber Material Intelligent Brake Foldable vacuum pump distributors

Product Description

Maxium Speed Weight Capacity Driving Range Climbing Range
6km/h 120kg 14-24km
Dimensions Charging Time Motor Battery
972x623x725mm 3-6H 150W*2 Lithium 24V6AH((10AH/12AH option)

More products

Quality Management System

Profession team with R&D, Quality Inspection, Quality Control, Quality Assurance, Production Management, Tracking System. Certified by EN12184, ISO9001, ISO13485, EMC ,FDA and in according with compliance standard.
 

Company Profile

 

HangZhou Sweetrich vehicle industry technology Co.,LTD was settled on HangZhou Industrial Zone, ZheJiang in 2011, which is a high-tech company covering an area of 60 acres with 30,000 square CHINAMFG of factory. And we have accumulated eleven-year experience of R&D and production of mobility scooter and power wheelchair. Focusing on the well-being and convenience of the elderly and handicapped people and always dedicating to enable vulnerable groups to be more independent, more dignified.

Sweetrich possesses the intellectual property right of our electric scooters and power wheelchairs. The products are user friendly designed to ensure users' comfort. They also have international advanced control technology and driving system to secure the smooth and safe drive. We design the carriage body scientifically and manage our production process strictly to guarantee the reliability of our functional products.
After many years development experience we have reached and got high reputation from our customers. Many customers have become our long-term business partners!

"Quality first, credit above and customer supreme " is our permanent operating objective. We believe that the market is a true test of the vitality of enterprises.

Facing the fierce market competition, Sweetrich ensures the promise to customers by qualified products, considerable service and reasonable price. Sweetrich has been exported to America,Europe,Japan,Australian,middle-east and so on.
We are looking CHINAMFG to establishing long term cooperation with you!

Testing Facilities

Company History

Exhibition

FAQ

Q1: Are you a manufacturer or trading company?
A1: We have our own factory to produce this products, and warmly welcome to visit us
at your convenient.

Q2: What about the shipping methods?
A2: By express/By air/By sea.

Q3: What about the payment methods?
A3: We accept T/T, L/C for big amount, and for small amount, you can pay us by Paypal,Western Union, Moneygram, Escrow etc.

04:What's your delivery lime?
A4: Usually we produce within 35 working days after receiving the payment.

Q5: Can I print our logo on your products?
A5: Yes, of course,we can do as your own design, just with small quantity, you need to pay film cost.

Q6: Can I order some samples for our testing?
A6: Sure, We will refund back you sample cost from the official order directly.

Q7: What's your MOQ( Minimum Order Quantity ) of each products?
A7: NO MOQ but price is different for different quantity.

Q8: OEM and ODM is available?
A8: Yes, we do OEM and ODM.

Q9: What is the product warranty?
A8: 1 year for the frame, and we will provide the wearing parts for replacement within 2
years freely.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Certification: ISO, RoHS, CE
Condition: New
Tilted: Non-Tilted
Folded: Folding
Leg Rest Type: Both Sides Separate
Samples:
US$ 900/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

Can brake motors be adapted for use in both indoor and outdoor environments?

Brake motors can indeed be adapted for use in both indoor and outdoor environments, provided they are appropriately designed and protected against the specific conditions they will encounter. The adaptability of brake motors allows them to function effectively and safely in diverse operating environments. Here's a detailed explanation of how brake motors can be adapted for use in both indoor and outdoor settings:

  • Indoor Adaptation: Brake motors intended for indoor use are typically designed to meet the specific requirements of indoor environments. They are often constructed with enclosures that protect the motor from dust, debris, and moisture commonly found indoors. These enclosures can be in the form of drip-proof (DP), totally enclosed fan-cooled (TEFC), or totally enclosed non-ventilated (TENV) designs. The enclosures prevent contaminants from entering the motor and ensure reliable and efficient operation in indoor settings.
  • Outdoor Adaptation: When brake motors are required for outdoor applications, they need to be adapted to withstand the challenges posed by outdoor conditions, such as temperature variations, moisture, and exposure to elements. Outdoor-rated brake motors are designed with additional protective measures to ensure their durability and performance. They may feature weatherproof enclosures, such as totally enclosed fan-cooled (TEFC) or totally enclosed non-ventilated (TENV) enclosures with added gaskets and seals to prevent water ingress. These enclosures provide effective protection against rain, snow, dust, and other outdoor elements, allowing the motor to operate reliably in outdoor environments.
  • Environmental Sealing: Brake motors can be equipped with environmental seals to further enhance their adaptability for both indoor and outdoor use. These seals provide an additional layer of protection against the entry of moisture, dust, and other contaminants. Depending on the specific application requirements, the seals can be applied to the motor's shaft, housing, or other vulnerable areas to ensure proper sealing and prevent damage or performance degradation due to environmental factors.
  • Corrosion Resistance: In certain outdoor environments or specific indoor settings with corrosive elements, brake motors can be designed with corrosion-resistant materials and coatings. These specialized materials, such as stainless steel or epoxy coatings, provide protection against corrosion caused by exposure to moisture, chemicals, or salt air. Corrosion-resistant brake motors are essential for ensuring long-term reliability and optimal performance in corrosive environments.
  • Temperature Considerations: Brake motors must be adapted to handle the temperature ranges encountered in both indoor and outdoor environments. For indoor applications, motors may be designed to operate within a specific temperature range, ensuring reliable performance without overheating. Outdoor-rated brake motors may have additional cooling features, such as oversized cooling fans or heat sinks, to dissipate heat effectively and operate within acceptable temperature limits. Heating elements can also be incorporated to prevent condensation and maintain optimal operating temperatures in outdoor or highly humid indoor environments.
  • IP Rating: In addition to the specific adaptations mentioned above, brake motors for both indoor and outdoor use are often assigned an Ingress Protection (IP) rating. The IP rating indicates the motor's level of protection against solid particles (first digit) and water ingress (second digit). The higher the IP rating, the greater the protection offered. IP ratings help users select brake motors that are suitable for their intended environment by considering factors such as dust resistance, water resistance, and overall environmental durability.

By incorporating appropriate enclosures, environmental seals, corrosion-resistant materials, temperature management features, and IP ratings, brake motors can be successfully adapted for use in both indoor and outdoor environments. These adaptations ensure that the motors are well-protected, perform reliably, and maintain their efficiency and longevity, regardless of the operating conditions they are exposed to.

brake motor

How do manufacturers ensure the quality and reliability of brake motors?

Manufacturers employ various processes and measures to ensure the quality and reliability of brake motors. These processes involve rigorous testing, adherence to industry standards, quality control procedures, and continuous improvement initiatives. Here's a detailed explanation of how manufacturers ensure the quality and reliability of brake motors:

  • Design and Engineering: Manufacturers invest considerable effort in the design and engineering phase of brake motors. They employ experienced engineers and designers who follow industry best practices and utilize advanced design tools to develop motors with robust and reliable braking systems. Thorough analysis, simulations, and prototyping are conducted to optimize the motor's performance, efficiency, and safety features.
  • Material Selection: High-quality materials are chosen for the construction of brake motors. Manufacturers carefully select components such as motor windings, brake discs, brake pads, and housing materials to ensure durability, heat resistance, and optimal friction characteristics. The use of quality materials enhances the motor's reliability and contributes to its long-term performance.
  • Manufacturing Processes: Stringent manufacturing processes are implemented to ensure consistent quality and reliability. Manufacturers employ advanced machinery and automation techniques for precision assembly and production. Strict quality control measures are applied at each stage of manufacturing to detect and rectify any defects or deviations from specifications.
  • Testing and Quality Assurance: Brake motors undergo comprehensive testing and quality assurance procedures before they are released to the market. These tests include performance testing, load testing, endurance testing, and environmental testing. Manufacturers verify that the motors meet or exceed industry standards and performance specifications. Additionally, they conduct safety tests to ensure compliance with applicable safety regulations and standards.
  • Certifications and Compliance: Manufacturers seek certifications and compliance with relevant industry standards and regulations. This may include certifications such as ISO 9001 for quality management systems or certifications specific to the motor industry, such as IEC (International Electrotechnical Commission) standards. Compliance with these standards demonstrates the manufacturer's commitment to producing high-quality and reliable brake motors.
  • Quality Control and Inspection: Manufacturers implement robust quality control processes throughout the production cycle. This includes inspection of raw materials, in-process inspections during manufacturing, and final inspections before shipment. Quality control personnel conduct visual inspections, dimensional checks, and performance evaluations to ensure that each brake motor meets the specified quality criteria.
  • Continuous Improvement: Manufacturers prioritize continuous improvement initiatives to enhance the quality and reliability of brake motors. They actively seek customer feedback, monitor field performance, and conduct post-production evaluations to identify areas for improvement. This feedback loop helps manufacturers refine their designs, manufacturing processes, and quality control procedures, leading to increased reliability and customer satisfaction.
  • Customer Support and Warranty: Manufacturers provide comprehensive customer support and warranty programs for their brake motors. They offer technical assistance, troubleshooting guides, and maintenance recommendations to customers. Warranty coverage ensures that any manufacturing defects or malfunctions are addressed promptly, bolstering customer confidence in the quality and reliability of the brake motors.

By employing robust design and engineering processes, meticulous material selection, stringent manufacturing processes, comprehensive testing and quality assurance procedures, certifications and compliance with industry standards, rigorous quality control and inspection measures, continuous improvement initiatives, and dedicated customer support and warranty programs, manufacturers ensure the quality and reliability of brake motors. These measures contribute to the production of high-performance motors that meet the safety, durability, and performance requirements of industrial and manufacturing applications.

brake motor

How do brake motors handle variations in load and stopping requirements?

Brake motors are designed to handle variations in load and stopping requirements by incorporating specific features and mechanisms that allow for flexibility and adaptability. These features enable brake motors to effectively respond to changes in load conditions and meet the diverse stopping requirements of different applications. Here's a detailed explanation of how brake motors handle variations in load and stopping requirements:

1. Adjustable Braking Torque: Brake motors often have adjustable braking torque, allowing operators to modify the stopping force according to the specific load requirements. By adjusting the braking torque, brake motors can accommodate variations in load size, weight, and inertia. Higher braking torque can be set for heavier loads, while lower braking torque can be selected for lighter loads, ensuring optimal stopping performance and preventing excessive wear or damage to the braking system.

2. Controlled Response Time: Brake motors provide controlled response times, allowing for precise and efficient stopping according to the application requirements. The response time refers to the duration between the command to stop and the actual cessation of rotation. Brake motors can be designed with adjustable response times, enabling operators to set the desired stopping speed based on the load characteristics and safety considerations. This flexibility ensures that the braking action is appropriately matched to the load and stopping requirements.

3. Dynamic Braking: Dynamic braking is a feature found in some brake motors that helps handle variations in load and stopping requirements. When the motor is de-energized, dynamic braking converts the kinetic energy of the rotating load into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. This braking mechanism allows brake motors to handle different load conditions and varying stopping requirements, dissipating excess energy and bringing the rotating equipment to a controlled stop.

4. Integrated Control Systems: Brake motors often come equipped with integrated control systems that allow for customized programming and adjustment of the braking parameters. These control systems enable operators to adapt the braking performance based on the load characteristics and stopping requirements. By adjusting parameters such as braking torque, response time, and braking profiles, brake motors can handle variations in load and achieve the desired stopping performance for different applications.

5. Monitoring and Feedback: Some brake motor systems incorporate monitoring and feedback mechanisms to provide real-time information about the load conditions and stopping performance. This feedback can include data on motor temperature, current consumption, or position feedback from encoders or sensors. By continuously monitoring these parameters, brake motors can dynamically adjust their braking action to accommodate variations in load and ensure optimal stopping performance.

6. Adaptable Brake Design: Brake motors are designed with consideration for load variations and stopping requirements. The brake design takes into account factors such as braking surface area, material composition, and cooling methods. These design features allow brake motors to handle different load conditions effectively and provide consistent and reliable stopping performance under varying circumstances.

By incorporating adjustable braking torque, controlled response time, dynamic braking, integrated control systems, monitoring and feedback mechanisms, and adaptable brake designs, brake motors can handle variations in load and stopping requirements. These features enhance the versatility and performance of brake motors, making them suitable for a wide range of applications across different industries.

China supplier Power Electric Wheelchair 250W*2 High-Power Brushless Motor Carbon Fiber Material Intelligent Brake Foldable   vacuum pump distributorsChina supplier Power Electric Wheelchair 250W*2 High-Power Brushless Motor Carbon Fiber Material Intelligent Brake Foldable   vacuum pump distributors
editor by CX 2024-05-08

China Custom ZD Direct On-line Starting High Quality Electric AC Brake Gear Motor vacuum pump electric

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Product Parameters

Features:

1) Dimensions: 90mm
2) Power: 60, 90, 120W
3) Voltage: 110V, 220V
4) Speed:
50Hz: 90~ 1350rpm
60Hz: 90~ 1650rpm
5) Reduction ratio: 3~ 750K
 

Gearhead Model Gear Ratio
5GN *K 3,3.6,5,6,7.5,9,12.5,15,18,25,30,36,50,60,75,90,100,120,150,180,200~750
5GN10XK(Decimal gearhead)

Other Related Products

Click here to find what you are looking for:

Company Profile

 

FAQ

Q: What're your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What's your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

brake motor

What safety precautions should be followed when working with brake motors?

Working with brake motors requires adherence to specific safety precautions to ensure the well-being of personnel and the proper functioning of the equipment. Brake motors involve electrical components and potentially hazardous mechanical operations, so it is essential to follow established safety guidelines. Here's a detailed explanation of the safety precautions that should be followed when working with brake motors:

  • Qualified Personnel: Only trained and qualified individuals should be allowed to work with brake motors. They should have a thorough understanding of electrical systems, motor operation, and safety procedures. Proper training ensures that personnel are familiar with the specific risks associated with brake motors and know how to handle them safely.
  • Power Isolation: Before performing any maintenance or repair tasks on a brake motor, it is crucial to isolate the power supply to the motor. This can be achieved by disconnecting the power source and following lockout/tagout procedures to prevent accidental re-energization. Power isolation eliminates the risk of electric shock and allows safe access to the motor without the danger of unexpected startup.
  • Personal Protective Equipment (PPE): When working with brake motors, appropriate personal protective equipment should be worn. This may include safety glasses, gloves, protective clothing, and hearing protection, depending on the specific hazards present. PPE helps safeguard against potential hazards such as flying debris, electrical shocks, and excessive noise, providing an additional layer of protection for personnel.
  • Proper Ventilation: Adequate ventilation should be ensured when working with brake motors, especially in indoor environments. Ventilation helps dissipate heat generated by the motor and prevents the buildup of potentially harmful fumes or gases. Proper ventilation reduces the risk of overheating and improves air quality, creating a safer working environment.
  • Safe Lifting and Handling: Brake motors can be heavy and require proper lifting and handling techniques to prevent injuries. When moving or installing a motor, personnel should use appropriate lifting equipment, such as cranes or hoists, and follow safe lifting practices. It is important to avoid overexertion, use proper body mechanics, and seek assistance when necessary to prevent strains or accidents.
  • Protection Against Moving Parts: Brake motors may have rotating or moving parts that pose a risk of entanglement or crushing injuries. Guards and protective covers should be in place to prevent accidental contact with these hazardous areas. Personnel should never reach into or attempt to adjust the motor while it is in operation or without proper lockout/tagout procedures in place.
  • Maintenance and Inspection: Regular maintenance and inspection of brake motors are essential for their safe and reliable operation. Maintenance tasks should only be performed by qualified personnel following manufacturer recommendations. Before conducting any maintenance or inspection, the motor should be properly isolated and de-energized. Visual inspections, lubrication, and component checks should be carried out according to the motor's maintenance schedule to identify and address any potential issues before they escalate.
  • Follow Manufacturer Guidelines: It is crucial to follow the manufacturer's guidelines and recommendations when working with brake motors. This includes adhering to installation procedures, operating instructions, and maintenance practices specified by the manufacturer. Manufacturers provide specific safety instructions and precautions that are tailored to their equipment, ensuring safe and efficient operation when followed meticulously.
  • Training and Awareness: Ongoing training and awareness programs should be implemented to keep personnel updated on safety practices and potential hazards associated with brake motors. This includes providing clear instructions, conducting safety meetings, and promoting a safety-conscious culture. Personnel should be encouraged to report any safety concerns or incidents to ensure continuous improvement of safety measures.

By following these safety precautions, personnel can mitigate risks and create a safer working environment when dealing with brake motors. Adhering to proper procedures, using appropriate PPE, ensuring power isolation, practicing safe lifting and handling, protecting against moving parts, conducting regular maintenance and inspections, and staying informed about manufacturer guidelines are all crucial steps in maintaining a safe and efficient work environment when working with brake motors.

brake motor

How do manufacturers ensure the quality and reliability of brake motors?

Manufacturers employ various processes and measures to ensure the quality and reliability of brake motors. These processes involve rigorous testing, adherence to industry standards, quality control procedures, and continuous improvement initiatives. Here's a detailed explanation of how manufacturers ensure the quality and reliability of brake motors:

  • Design and Engineering: Manufacturers invest considerable effort in the design and engineering phase of brake motors. They employ experienced engineers and designers who follow industry best practices and utilize advanced design tools to develop motors with robust and reliable braking systems. Thorough analysis, simulations, and prototyping are conducted to optimize the motor's performance, efficiency, and safety features.
  • Material Selection: High-quality materials are chosen for the construction of brake motors. Manufacturers carefully select components such as motor windings, brake discs, brake pads, and housing materials to ensure durability, heat resistance, and optimal friction characteristics. The use of quality materials enhances the motor's reliability and contributes to its long-term performance.
  • Manufacturing Processes: Stringent manufacturing processes are implemented to ensure consistent quality and reliability. Manufacturers employ advanced machinery and automation techniques for precision assembly and production. Strict quality control measures are applied at each stage of manufacturing to detect and rectify any defects or deviations from specifications.
  • Testing and Quality Assurance: Brake motors undergo comprehensive testing and quality assurance procedures before they are released to the market. These tests include performance testing, load testing, endurance testing, and environmental testing. Manufacturers verify that the motors meet or exceed industry standards and performance specifications. Additionally, they conduct safety tests to ensure compliance with applicable safety regulations and standards.
  • Certifications and Compliance: Manufacturers seek certifications and compliance with relevant industry standards and regulations. This may include certifications such as ISO 9001 for quality management systems or certifications specific to the motor industry, such as IEC (International Electrotechnical Commission) standards. Compliance with these standards demonstrates the manufacturer's commitment to producing high-quality and reliable brake motors.
  • Quality Control and Inspection: Manufacturers implement robust quality control processes throughout the production cycle. This includes inspection of raw materials, in-process inspections during manufacturing, and final inspections before shipment. Quality control personnel conduct visual inspections, dimensional checks, and performance evaluations to ensure that each brake motor meets the specified quality criteria.
  • Continuous Improvement: Manufacturers prioritize continuous improvement initiatives to enhance the quality and reliability of brake motors. They actively seek customer feedback, monitor field performance, and conduct post-production evaluations to identify areas for improvement. This feedback loop helps manufacturers refine their designs, manufacturing processes, and quality control procedures, leading to increased reliability and customer satisfaction.
  • Customer Support and Warranty: Manufacturers provide comprehensive customer support and warranty programs for their brake motors. They offer technical assistance, troubleshooting guides, and maintenance recommendations to customers. Warranty coverage ensures that any manufacturing defects or malfunctions are addressed promptly, bolstering customer confidence in the quality and reliability of the brake motors.

By employing robust design and engineering processes, meticulous material selection, stringent manufacturing processes, comprehensive testing and quality assurance procedures, certifications and compliance with industry standards, rigorous quality control and inspection measures, continuous improvement initiatives, and dedicated customer support and warranty programs, manufacturers ensure the quality and reliability of brake motors. These measures contribute to the production of high-performance motors that meet the safety, durability, and performance requirements of industrial and manufacturing applications.

brake motor

What industries and applications commonly use brake motors?

Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here's a detailed overview of the industries and applications commonly using brake motors:

1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.

2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.

3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.

4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.

5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.

6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.

7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.

8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.

9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.

These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.

China Custom ZD Direct On-line Starting High Quality Electric AC Brake Gear Motor   vacuum pump electricChina Custom ZD Direct On-line Starting High Quality Electric AC Brake Gear Motor   vacuum pump electric
editor by CX 2024-05-03

China Best Sales 370W 750W 1.1kw 1.5kw 2.2kw 3kw 3.7kw 5.5kw 7.5kw 3 Phase 220V Induction Electric Brake Motor vacuum pump connector

Product Description

Product Description

Aluminum shell 0.12kw-315kw three-phase asynchronous motor 

The performance of YE2 series high-efficiency three-phase asynchronous motors conforms to the national standard GB/T11707.
YE2 series of high-efficiency motors are energy-saving and environmentally friendly, using new technologies, new processes and new materials, so that the efficiency index of the motor completely reaches the index level of IE2. The motor uses class F insulation, and the temperature rise of the whole series is assessed according to class B, which greatly improves Safety and reliability. It can be widely used in various mechanical transmission equipment such as machine tools, fans, pumps, compressors, packaging machinery, mining machinery, construction machinery and so on.
The power can meet 0.18KW-900kw, the normal voltage is 380v, and the voltage can be customized 415v 430v, etc., the speed has 2 poles, 4 poles, 6 poles and 8 poles.The normal frequency is 50hz, 60hz needs to be customized, the cooling method is ic411, the protection level is IP55, and the working system is S1.
Installation structure B3 foot ;B5 conventional flange ;B35 foot and conventional flange.

Motor Features:

1. Frame size:H56-355;
2. Power:0.12-315Kw;
3. Voltage: 380V;

4. Rated Frequency: 50 Hz / 60 Hz;

5. Poles: 2 / 4 / 6 / 8 / 10

6. Speed: 590 -2980 r/min

7. Ambient Temperature: -15°C-40°C 

8. Model of CONEECTION: Y-Connection for 3 KW motor or less while Delta-Connection for 4 KW motor or more;

9. Mounting:  B3; B5; B35; B14; B34; 

10. Current: 1.5-465 A (AC);

11. Duty: continuous (S1);

12. Insulation Class:  B;

13. Protection Class:  IP44,IP54,IP55;

14. Frame material: aluminum body(56-132 frame), cast iron(71-355 frame)

15. Terminal box : Top or Side 

16. Cooling Method: IC411 Standards;

17. Altitude: No more than 1,000 meters above sea level;

18. Packing: 63-112 frame be packaged by carton&pallets

                   132-355 frame be packaged by plywood case;

19. Certifications: CE, CCC, ISO9001: 2008

 

Installation Instructions

    Three-phase Asynchronous Electric Motor
1). Power:  0.12KW-315KW;
2). Frame:  H56 to 355;
3). Shell:   cast iron body , aluminum body ;
4). Pole:  2/4/6/8 poles;
5). Mounting arrangement:  B3/B5/B14/B35/B34 or other;
6). Voltage:   220V, 380V, 400V, 415V, 440V or on request (50Hz or 60Hz);
7). Protection class:  IP54 / IP55 /IP65;
8). Duty/Rating:  S1 (Continuous);
9). Cooling method:   IC411 (SELF-FAN cooling);
10). Insulation class:   F;
11).Standard:  (IEC) EN60034-1 & EN1065714-1.

 

Technical Data

technical parameter

 

Model

 

Output

 

Full Load

75%load

50%load

 

 

Ist/TN

 

 

Tst/TN

 

Tmax/TN

KW

HP

Current(A)

Speed(r/min)

Eff(%)

Power factor

Eff(%)

Power

factor

Eff(%)

Power

factor

380V 50Hz Synchronous Speed 3000r/min(2 poles)
MS56M1-2 0.09 0.12 0.30 2700 58.0 0.78 56.2 0.77 54.0 0.74 2.2 5.5 2.2
MS56M2-2 0.12 0.18 0.38 2700 60.0 0.79 58.5 0.78 56.0 0.75 2.2 5.5 2.2
MS63M1-2 0.18 0.25 0.53 2720 63.0 0.80 62.0 0.80 60.5 0.76 2.2 5.5 2.2
MS63M2-2 0.25 0.33 0.63 2720 65.0 0.81 64.0 0.80 62.5 0.77 2.2 5.5 2.2
MS71M1-2 0.37 0.50 0.99 2740 66.0 0.81 65.0 0.80 63.5 0.78 2.2 6.1 2.2
MS71M2-2 0.55 0.75 1.40 2740 71.0 0.82 70.0 0.82 68.5 0.79 2.2 6.1 2.3
MS80M1-2 0.75 1 1.83 2835 77.4 0.83 72.0 0.83 70.2 0.80 2.2 6.1 2.3
MS80M2-2 1.1 1.5 2.58 2835 79.6 0.84 75.1 0.83 73.0 0.80 2.2 7.0 2.3
MS90S-2 1.5 2 3.43 2845 81.3 0.84 77.0 0.85 70.0 0.81 2.2 7.0 2.3
MS90L-2 2.2 3 4.85 2845 83.2 0.85 80.0 0.85 78.0 0.84 2.2 7.0 2.3
MS100L-2 3.0 4 6.31 2875 84.6 0.87 81.0 0.86 79.3 0.86 2.2 7.0 2.3
MS112M-2 4.0 5.5 8.10 2895 85.8 0.88 83.5 0.87 81.0 0.84 2.2 7.5 2.3
MS132S1-2 5.5 7.5 11.0 2905 87.0 0.88 84.3 0.89 83.0 0.84 2.2 7.5 2.3
MS132S2-2 7.5 10 14.9 2905 88.1 0.88 85.9 0.87 83.7 0.84 2.2 7.5 2.3
MS160M1-2 11 15 21.3 2935 89.4 0.89 86.8 0.89 84.1 0.84 2.2 7.5 2.3
MS160M2-2 15 20 28.8 2935 90.3 0.89 88.0 0.89 86.4 0.85 2.2 7.5 2.3
MS160L-2 18.5 25 34.7 2935 90.9 0.90 89.0 0.88 86.8 0.86 2.2 7.5 2.3
 380V 50Hz Synchronous Speed 1500/min(4poles)
MS56M1-4 0.06 0.08 0.26 1300 53.0 0.70 51.8 0.65 50.0 0.53 2.1 5.2 2.2
MS56M2-4 0.09 0.12 0.35 1300 55.0 0.71 53.8 0.67 52.0 0.55 2.1 5.2 2.2
MS63M1-4 0.12 0.18 0.42 1310 57.0 0.72 56.1 0.69 53.9 0.57 2.1 5.2 2.2
MS63M2-4 0.18 0.25 0.62 1310 60.0 0.73 58.5 0.70 56.7 0.59 2.1 5.2 2.2
MS71M1-4 0.25 0.33 0.79 1330 65.0 0.74 62.4 0.73 59.3 0.59 2.1 5.2 2.2
MS71M2-4 0.37 0.50 1.12 1330 67.0 0.75 65.3 0.74 60.8 0.63 2.1 5.2 2.2
MS80M1-4 0.55 0.75 1.57 1395 71.0 0.75 69.2 0.74 67.2 0.64 2.4 5.2 2.3
MS80M2-4 0.75 1.0 2.03 1395 79.6 0.76 71.7 0.75 69.8 0.67 2.3 6.0 2.3
MS90S-4 1.1 1.5 2.89 1405 81.4 0.77 73.1 0.75 70.8 0.67 2.3 6.0 2.3
MS90L-4 1.5 2 3.70 1405 82.8 0.79 76.1 0.76 73.7 0.69 2.3 6.0 2.3
MS100L1-4 2.2 3 5.16 1435 84.3 0.81 78.0 0.79 75.5 0.69 2.3 7.0 2.3
MS100L2-4 3.0 4 6.78 1435 85.5 0.82 79.9 0.78 77.5 0.70 2.3 7.0 2.3
MS112M-4 4.0 5.5 8.80 1445 86.6 0.82 81.9 0.79 79.6 0.70 2.3 7.0 2.3
MS132S-4 5.5 7.5 11.7 1445 87.7 0.83 82.8 0.81 80.4 0.73 2.3 7.0 2.3
MS132M-4 7 10 15.6 1445 88.7 0.84 84.8 0.82 82.6 0.74 2.3 7.0 2.3
MS160M-4 11 15 22.3 1465 89.8 0.84 85.8 0.83 83.8 0.75 2.2 7.0 2.3
MS160L-4 15 20 30.1 1465 90.6 0.85 90.0 0.83 88.5 0.75 2.2 7.5 2.3
 380V 50Hz Synchronous Speed 1500/min(6 Poles)
MS71M1-6 0.18 0.25 0.74 850 56.0 0.66 54.6 0.66 53.0 0.65 1.9 4.0 2.0
MS71M2-6 0.25 0.33 0.95 850 59.0 0.68 57.5 0.68 56.1 0.62 1.9 4.0 2.0
MS80M1-6 0.35 0.50 1.30 895 62.0 0.70 60.5 0.69 59.1 0.64 1.9 4.7 2.0
MS80M2-6 0.55 0.75 1.79 895 65.0 0.72 63.3 0.71 60.1 0.64 1.9 4.7 2.1
MS90S-6 0.75 1 2.29 915 75.9 0.72 67.3 0.72 66.3 0.65 2.0 5.5 2.1
MS90L-6 1.1 1.5 3.18 915 78.1 0.73 70.2 0.72 38.0 0.66 2.0 5.5 2.2
MS100L-6 1.5 2 3.94 945 79.8 0.75 74.0 0.75 71.0 0.68 2.0 5.5 2.1
MS112M-6 2.2 3 5.60 945 81.8 0.75 77.1 0.77 75.1 0.69 2.0 6.5 2.1
MS132M1-6 3.0 4 7.40 965 83.3 0.76 78.9 0.77 76.1 0.69 2.1 6.5 2.1
MS132M2-6 4.0 5.5 9.80 965 84.6 0.76 80.0 0.76 77.5 0.70 2.1 6.5 2.1
MS160M-6 7.5 10 17.0 975 87.2 0.77 83.4 0.77 82.4 0.70 2.0 6.5 2.1
MS160L-6 11 15 24.2 975 88.7 0.78 86.6 0.78 84.8 0.72 2.0 6.5 2.1
380V 50Hz Synchronous Speed 750min(8 Poles)
MS80M1-8 0.18 0.25 0.88 630 51.0 0.61 47.9 0.52 44.6 0.54 1.8 4.0 1.9
MS80M2-8 0.25 0.33 1.15 640 54.0 0.61 48.9 0.54 45.3 0.55 1.8 4.0 1.9
MS90S-8 0.37 0.50 1.49 660 62.0 0.61 55.6 0.57 50.7 0.56 1.8 4.0 1.9
MS90L-8 0.55 0.75 2.18 660 63.0 0.61 55.9 0.58 50.9 0.59 1.8 4.0 2.0
MS100L1-8 0.75 1 2.17 690 71.0 0.67 60.9 0.65 59.7 0.56 1.8 4.0 2.0
MS100L2-8 1.1 1.5 2.39 690 73.0 0.69 72.0 0.61 59.8 0.57 1.8 4.0 2.0
MS112M-8 1.5 2 4.50 680 75.0 0.69 74.2 0.64 59.8 0.58 1.8 5.0 2.0
MS132S-8 2.2 3 6.00 710 78.0 0.71 77.2 0.61 60.1 0.58 1.8 6.0 2.0
MS132M-8 3.0 4 7.90 710 79.0 0.73 78.5 0.62 60.0 0.59 1.8 6.0 2.0
MS160M1-8 4.0 5.5 10.3 720 81.0 0.73 80.2 0.63 61.0 0.58 1.9 6.0 2.0
MS160M2-8 5.5 7.5 13.6 720 83.0 0.74 81.2 0.61 62.0 0.59 2.0 6.0 2.0
MS160L-8 7.5 10 17.8 720 85.5 0.75 84.5 0.63 65.9 0.59 2.0 6.0 2.0

 

Detailed Photos

 

 

Our OEM Motors, Diesel generator sets ,Alternators are talior made to fit the OEM customer's application.  Our  based Engineering Design team work with you to ensure the motor meets your individual needs.

2 ,4,6 ,8 and 10 pole operation.  with CE Approvals available
All Motors, Diesel generator sets ,Alternators may be designed for optional voltages and frequencies.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Customization:
Available

|

brake motor

How do brake motors impact the overall productivity of manufacturing processes?

Brake motors have a significant impact on the overall productivity of manufacturing processes by enhancing operational efficiency, improving safety, and enabling precise control over motion. They play a crucial role in ensuring smooth and controlled movement, which is vital for the seamless operation of machinery and equipment. Here's a detailed explanation of how brake motors impact the overall productivity of manufacturing processes:

  • Precise Control and Positioning: Brake motors enable precise control over the speed, acceleration, and deceleration of machinery and equipment. This precise control allows for accurate positioning, alignment, and synchronization of various components, resulting in improved product quality and reduced errors. The ability to precisely control the motion enhances the overall productivity of manufacturing processes by minimizing waste, rework, and downtime.
  • Quick Deceleration and Stopping: Brake motors provide fast and controlled deceleration and stopping capabilities. This is particularly important in manufacturing processes that require frequent changes in speed or direction. The ability to rapidly decelerate and stop equipment allows for efficient handling of workpieces, quick tool changes, and seamless transitions between manufacturing steps. It reduces cycle times and improves overall productivity by minimizing unnecessary delays and optimizing throughput.
  • Improved Safety: Brake motors enhance safety in manufacturing processes by providing reliable braking functionality. They help prevent coasting or unintended movement of equipment when power is cut off or during emergency situations. The braking capability of brake motors contributes to the safe operation of machinery, protects personnel, and prevents damage to equipment or workpieces. By ensuring a safe working environment, brake motors help maintain uninterrupted production and minimize the risk of accidents or injuries.
  • Enhanced Equipment Performance: The integration of brake motors into manufacturing equipment improves overall performance. Brake motors work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to optimize motor operation. This integration allows for efficient power utilization, reduced energy consumption, and improved responsiveness. By maximizing equipment performance, brake motors contribute to higher productivity, lower operational costs, and increased output.
  • Reduced Downtime and Maintenance: Brake motors are designed for durability and reliability, reducing the need for frequent maintenance and minimizing downtime. The robust construction and high-quality components of brake motors ensure long service life and consistent performance. This reliability translates into fewer unplanned shutdowns, reduced maintenance requirements, and improved overall equipment availability. By minimizing downtime and maintenance-related interruptions, brake motors contribute to increased productivity and manufacturing efficiency.
  • Flexibility and Adaptability: Brake motors offer flexibility and adaptability in manufacturing processes. They can be integrated into various types of machinery and equipment, spanning different industries and applications. Brake motors can be customized to meet specific requirements, such as adjusting brake torque or incorporating specific control algorithms. This adaptability allows manufacturers to optimize their processes, accommodate changing production needs, and increase overall productivity.

In summary, brake motors impact the overall productivity of manufacturing processes by providing precise control and positioning, enabling quick deceleration and stopping, improving safety, enhancing equipment performance, reducing downtime and maintenance, and offering flexibility and adaptability. Their role in ensuring smooth and controlled movement, combined with their reliable braking functionality, contributes to efficient and seamless manufacturing operations, ultimately leading to increased productivity, improved product quality, and cost savings.

brake motor

What maintenance practices are essential for extending the lifespan of a brake motor?

Maintaining a brake motor properly is crucial for extending its lifespan and ensuring optimal performance. Regular maintenance practices help prevent premature wear, identify potential issues, and address them promptly. Here are some essential maintenance practices for extending the lifespan of a brake motor:

  • Cleanliness: Keeping the brake motor clean is important to prevent the accumulation of dirt, dust, or debris that can affect its performance. Regularly inspect the motor and clean it using appropriate cleaning methods and materials, ensuring that the power is disconnected before performing any cleaning tasks.
  • Lubrication: Proper lubrication of the brake motor's moving parts is essential to minimize friction and reduce wear and tear. Follow the manufacturer's recommendations regarding the type of lubricant to use and the frequency of lubrication. Ensure that the lubrication points are accessible and apply the lubricant in the recommended amounts.
  • Inspection: Regular visual inspections of the brake motor are necessary to identify any signs of damage, loose connections, or abnormal wear. Check for any loose or damaged components, such as bolts, cables, or connectors. Inspect the brake pads or discs for wear and ensure they are properly aligned. If any issues are detected, take appropriate action to address them promptly.
  • Brake Adjustment: Periodically check and adjust the brake mechanism of the motor to ensure it maintains proper braking performance. This may involve adjusting the brake pads, ensuring proper clearance, and verifying that the braking force is sufficient. Improper brake adjustment can lead to excessive wear, reduced stopping power, or safety hazards.
  • Temperature Monitoring: Monitoring the operating temperature of the brake motor is important to prevent overheating and thermal damage. Ensure that the motor is not subjected to excessive ambient temperatures or overloaded conditions. If the motor becomes excessively hot, investigate the cause and take corrective measures, such as improving ventilation or reducing the load.
  • Vibration Analysis: Periodic vibration analysis can help detect early signs of mechanical problems or misalignment in the brake motor. Using specialized equipment or vibration monitoring systems, measure and analyze the motor's vibration levels. If abnormal vibrations are detected, investigate and address the underlying issues to prevent further damage.
  • Electrical Connections: Regularly inspect the electrical connections of the brake motor to ensure they are secure and free from corrosion. Loose or faulty connections can lead to power issues, motor malfunctions, or electrical hazards. Tighten any loose connections and clean any corrosion using appropriate methods and materials.
  • Testing and Calibration: Perform periodic testing and calibration of the brake motor to verify its performance and ensure it operates within the specified parameters. This may involve conducting load tests, verifying braking force, or checking the motor's speed and torque. Follow the manufacturer's guidelines or consult with qualified technicians for proper testing and calibration procedures.
  • Documentation and Record-keeping: Maintain a record of all maintenance activities, inspections, repairs, and any relevant information related to the brake motor. This documentation helps track the maintenance history, identify recurring issues, and plan future maintenance tasks effectively. It also serves as a reference for warranty claims or troubleshooting purposes.
  • Professional Servicing: In addition to regular maintenance tasks, consider scheduling professional servicing and inspections by qualified technicians. They can perform comprehensive checks, identify potential issues, and perform specialized maintenance procedures that require expertise or specialized tools. Professional servicing can help ensure thorough maintenance and maximize the lifespan of the brake motor.

By following these essential maintenance practices, brake motor owners can enhance the lifespan of the motor, reduce the risk of unexpected failures, and maintain its optimal performance. Regular maintenance not only extends the motor's lifespan but also contributes to safe operation, energy efficiency, and overall reliability.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here's a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China Best Sales 370W 750W 1.1kw 1.5kw 2.2kw 3kw 3.7kw 5.5kw 7.5kw 3 Phase 220V Induction Electric Brake Motor   vacuum pump connector	China Best Sales 370W 750W 1.1kw 1.5kw 2.2kw 3kw 3.7kw 5.5kw 7.5kw 3 Phase 220V Induction Electric Brake Motor   vacuum pump connector
editor by CX 2024-05-02

China wholesaler Ie1 Ie2 Ie3-100 Osja Series Aluminum Casing 3pH AC Brake Electric AC Motor vacuum pump engine

Product Description

The OSJA series AC brake 3 phase induction motors are totally enclosed fan cooled squirrel cage motor that are manufactured with new materialand technology.
The series aluminum frame AC brake motors with compact structure and removable feet, have the characteristics of high reliability, beautiful apperance, low noise ,little vibration, can be applied to a variery of transmission equipments such as fan, pump, machine tool, textile machinery, plastic machinery, food machinery, packaging machinery, wood-working machinery, etc.

Frame size: 63-132mm;
Output: 009-7.5kw;
Poles: 2-4-6-8-10;
protection class: IP44/IP54/IP55
Voltage: 220~440V;
S1, IC411, aluminum body
Mounting Type: B3,B5,B35,B14,B34...
Ambient temperature: -20senti degree≤ 0≤ 40senti degree
Altitude:lower than 1000 CHINAMFG above sea level

*****************************************
our production range:

we are good at AC motor with IEC/NEMA/GOST standard motor as below:

IEC----frame size:80-560, 0.12kw to 2000kw with 220~1100V, general purpose;
      ----frame size:80-560, 0.12kw to 2000kw with 220~1100V,Explosion proof ExdIIBT4+CT4;

IEC----frame size:355-900,  250kw to 5000kw with 3000~11000V,general purpose;
      ----frame size:355-900,  250kw to 5000kw with 3000~11000V,Explosion proof ExdIIBT4+CT4 ;

NEMA----frame size: 143T-449T, 1hp to 300hp with 230-690V, general purpose;
          ----frame size: 143T-449T, 1hp to 300hp with 230-690V, Explosion proof ExdIIBT4;

GOST----frame size: 63-560, 0.12kw to 2000kw with 220~1100V, general purpose;
          ----frame size: 63-450, 0.12kw to 1500kw with 220~1100V, Explosion proof ExdIIBT4;

 GOST----frame size: 355-560,  185kw to 2500kw with 3000~11000V, general purpose;
           ----frame size: 355-560,  185kw to 2500kw with 3000~11000V,Explosion proof ExdIIBT4;

Certificate: ISO9001/CCC/CE0123/ATEX/CCS/CSA/UL/TUV...
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2/4/6/8/10
Customization:
Available

|

brake motor

What safety precautions should be followed when working with brake motors?

Working with brake motors requires adherence to specific safety precautions to ensure the well-being of personnel and the proper functioning of the equipment. Brake motors involve electrical components and potentially hazardous mechanical operations, so it is essential to follow established safety guidelines. Here's a detailed explanation of the safety precautions that should be followed when working with brake motors:

  • Qualified Personnel: Only trained and qualified individuals should be allowed to work with brake motors. They should have a thorough understanding of electrical systems, motor operation, and safety procedures. Proper training ensures that personnel are familiar with the specific risks associated with brake motors and know how to handle them safely.
  • Power Isolation: Before performing any maintenance or repair tasks on a brake motor, it is crucial to isolate the power supply to the motor. This can be achieved by disconnecting the power source and following lockout/tagout procedures to prevent accidental re-energization. Power isolation eliminates the risk of electric shock and allows safe access to the motor without the danger of unexpected startup.
  • Personal Protective Equipment (PPE): When working with brake motors, appropriate personal protective equipment should be worn. This may include safety glasses, gloves, protective clothing, and hearing protection, depending on the specific hazards present. PPE helps safeguard against potential hazards such as flying debris, electrical shocks, and excessive noise, providing an additional layer of protection for personnel.
  • Proper Ventilation: Adequate ventilation should be ensured when working with brake motors, especially in indoor environments. Ventilation helps dissipate heat generated by the motor and prevents the buildup of potentially harmful fumes or gases. Proper ventilation reduces the risk of overheating and improves air quality, creating a safer working environment.
  • Safe Lifting and Handling: Brake motors can be heavy and require proper lifting and handling techniques to prevent injuries. When moving or installing a motor, personnel should use appropriate lifting equipment, such as cranes or hoists, and follow safe lifting practices. It is important to avoid overexertion, use proper body mechanics, and seek assistance when necessary to prevent strains or accidents.
  • Protection Against Moving Parts: Brake motors may have rotating or moving parts that pose a risk of entanglement or crushing injuries. Guards and protective covers should be in place to prevent accidental contact with these hazardous areas. Personnel should never reach into or attempt to adjust the motor while it is in operation or without proper lockout/tagout procedures in place.
  • Maintenance and Inspection: Regular maintenance and inspection of brake motors are essential for their safe and reliable operation. Maintenance tasks should only be performed by qualified personnel following manufacturer recommendations. Before conducting any maintenance or inspection, the motor should be properly isolated and de-energized. Visual inspections, lubrication, and component checks should be carried out according to the motor's maintenance schedule to identify and address any potential issues before they escalate.
  • Follow Manufacturer Guidelines: It is crucial to follow the manufacturer's guidelines and recommendations when working with brake motors. This includes adhering to installation procedures, operating instructions, and maintenance practices specified by the manufacturer. Manufacturers provide specific safety instructions and precautions that are tailored to their equipment, ensuring safe and efficient operation when followed meticulously.
  • Training and Awareness: Ongoing training and awareness programs should be implemented to keep personnel updated on safety practices and potential hazards associated with brake motors. This includes providing clear instructions, conducting safety meetings, and promoting a safety-conscious culture. Personnel should be encouraged to report any safety concerns or incidents to ensure continuous improvement of safety measures.

By following these safety precautions, personnel can mitigate risks and create a safer working environment when dealing with brake motors. Adhering to proper procedures, using appropriate PPE, ensuring power isolation, practicing safe lifting and handling, protecting against moving parts, conducting regular maintenance and inspections, and staying informed about manufacturer guidelines are all crucial steps in maintaining a safe and efficient work environment when working with brake motors.

brake motor

What maintenance practices are essential for extending the lifespan of a brake motor?

Maintaining a brake motor properly is crucial for extending its lifespan and ensuring optimal performance. Regular maintenance practices help prevent premature wear, identify potential issues, and address them promptly. Here are some essential maintenance practices for extending the lifespan of a brake motor:

  • Cleanliness: Keeping the brake motor clean is important to prevent the accumulation of dirt, dust, or debris that can affect its performance. Regularly inspect the motor and clean it using appropriate cleaning methods and materials, ensuring that the power is disconnected before performing any cleaning tasks.
  • Lubrication: Proper lubrication of the brake motor's moving parts is essential to minimize friction and reduce wear and tear. Follow the manufacturer's recommendations regarding the type of lubricant to use and the frequency of lubrication. Ensure that the lubrication points are accessible and apply the lubricant in the recommended amounts.
  • Inspection: Regular visual inspections of the brake motor are necessary to identify any signs of damage, loose connections, or abnormal wear. Check for any loose or damaged components, such as bolts, cables, or connectors. Inspect the brake pads or discs for wear and ensure they are properly aligned. If any issues are detected, take appropriate action to address them promptly.
  • Brake Adjustment: Periodically check and adjust the brake mechanism of the motor to ensure it maintains proper braking performance. This may involve adjusting the brake pads, ensuring proper clearance, and verifying that the braking force is sufficient. Improper brake adjustment can lead to excessive wear, reduced stopping power, or safety hazards.
  • Temperature Monitoring: Monitoring the operating temperature of the brake motor is important to prevent overheating and thermal damage. Ensure that the motor is not subjected to excessive ambient temperatures or overloaded conditions. If the motor becomes excessively hot, investigate the cause and take corrective measures, such as improving ventilation or reducing the load.
  • Vibration Analysis: Periodic vibration analysis can help detect early signs of mechanical problems or misalignment in the brake motor. Using specialized equipment or vibration monitoring systems, measure and analyze the motor's vibration levels. If abnormal vibrations are detected, investigate and address the underlying issues to prevent further damage.
  • Electrical Connections: Regularly inspect the electrical connections of the brake motor to ensure they are secure and free from corrosion. Loose or faulty connections can lead to power issues, motor malfunctions, or electrical hazards. Tighten any loose connections and clean any corrosion using appropriate methods and materials.
  • Testing and Calibration: Perform periodic testing and calibration of the brake motor to verify its performance and ensure it operates within the specified parameters. This may involve conducting load tests, verifying braking force, or checking the motor's speed and torque. Follow the manufacturer's guidelines or consult with qualified technicians for proper testing and calibration procedures.
  • Documentation and Record-keeping: Maintain a record of all maintenance activities, inspections, repairs, and any relevant information related to the brake motor. This documentation helps track the maintenance history, identify recurring issues, and plan future maintenance tasks effectively. It also serves as a reference for warranty claims or troubleshooting purposes.
  • Professional Servicing: In addition to regular maintenance tasks, consider scheduling professional servicing and inspections by qualified technicians. They can perform comprehensive checks, identify potential issues, and perform specialized maintenance procedures that require expertise or specialized tools. Professional servicing can help ensure thorough maintenance and maximize the lifespan of the brake motor.

By following these essential maintenance practices, brake motor owners can enhance the lifespan of the motor, reduce the risk of unexpected failures, and maintain its optimal performance. Regular maintenance not only extends the motor's lifespan but also contributes to safe operation, energy efficiency, and overall reliability.

brake motor

What industries and applications commonly use brake motors?

Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here's a detailed overview of the industries and applications commonly using brake motors:

1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.

2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.

3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.

4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.

5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.

6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.

7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.

8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.

9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.

These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.

China wholesaler Ie1 Ie2 Ie3-100 Osja Series Aluminum Casing 3pH AC Brake Electric AC Motor   vacuum pump engine	China wholesaler Ie1 Ie2 Ie3-100 Osja Series Aluminum Casing 3pH AC Brake Electric AC Motor   vacuum pump engine
editor by CX 2024-04-29

China supplier Ie1 Ie2 Ie3-100 Osjd Series Aluminum Casing 3pH DC Brake Electric Motor vacuum pump diy

Product Description

The OSJD series DC brake 3 phase induction motors are totally enclosed fan cooled squirrel cage motor that are manufactured with new materialand technology.
The series motors are produced from the original OS series motor by adding a DC electromagnetic brake.It has the characteristics of simple structure,rapid braking,high reliability,low noise,little vibration,and can be applied to hoisting crane,electric valve,machine tool,wood-working machinery,printing machinery,reducer and other machinery which need rapid and accurate braking.

Frame size: 63-132mm;
Output: 009-7.5kw;
Poles: 2-4-6-8-10;
protection class: IP44/IP54/IP55
Voltage: 220~440V;
S1, IC411, aluminum body
Mounting Type: B3,B5,B35,B14,B34...
Ambient temperature: -20senti degree≤ 0≤ 40senti degree
Altitude:lower than 1000 CHINAMFG above sea level

*****************************************
our production range:

we are good at AC motor with IEC/NEMA/GOST standard motor as below:

IEC----frame size:80-560, 0.12kw to 2000kw with 220~1100V, general purpose;
      ----frame size:80-560, 0.12kw to 2000kw with 220~1100V,Explosion proof ExdIIBT4+CT4;

IEC----frame size:355-900,  250kw to 5000kw with 3000~11000V,general purpose;
      ----frame size:355-900,  250kw to 5000kw with 3000~11000V,Explosion proof ExdIIBT4+CT4 ;

NEMA----frame size: 143T-449T, 1hp to 300hp with 230-690V, general purpose;
          ----frame size: 143T-449T, 1hp to 300hp with 230-690V, Explosion proof ExdIIBT4;

GOST----frame size: 63-560, 0.12kw to 2000kw with 220~1100V, general purpose;
          ----frame size: 63-450, 0.12kw to 1500kw with 220~1100V, Explosion proof ExdIIBT4;

 GOST----frame size: 355-560,  185kw to 2500kw with 3000~11000V, general purpose;
           ----frame size: 355-560,  185kw to 2500kw with 3000~11000V,Explosion proof ExdIIBT4;

Certificate: ISO9001/CCC/CE0123/ATEX/CCS/CSA/UL/TUV...
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2/4/6/8/10
Customization:
Available

|

brake motor

Are there any emerging trends in brake motor technology, such as digital control?

Yes, there are emerging trends in brake motor technology that are shaping the future of this field. One such trend is the adoption of digital control systems, which offer several advantages over traditional control methods. These advancements in digital control are revolutionizing brake motor technology and unlocking new possibilities for improved performance, efficiency, and integration within industrial processes. Here's a detailed explanation of the emerging trends in brake motor technology, including the shift towards digital control:

  • Digital Control Systems: Digital control systems are becoming increasingly prevalent in brake motor technology. These systems utilize advanced microprocessors, sensors, and software algorithms to provide precise control, monitoring, and diagnostics. Digital control enables enhanced motor performance, optimized energy efficiency, and improved operational flexibility. It allows for seamless integration with other digital systems, such as programmable logic controllers (PLCs) or industrial automation networks, facilitating intelligent and interconnected manufacturing processes.
  • Intelligent Motor Control: The integration of digital control systems with brake motors enables intelligent motor control capabilities. These systems use sensor feedback and real-time data analysis to dynamically adjust motor parameters, such as speed, torque, and braking force, based on the changing operating conditions. Intelligent motor control optimizes motor performance, minimizes energy consumption, and enhances overall system efficiency. It also enables predictive maintenance by continuously monitoring motor health and providing early warnings for potential faults or failures.
  • Network Connectivity and Industry 4.0: Brake motors are increasingly designed to be part of interconnected networks in line with the principles of Industry 4.0. With digital control systems, brake motors can be connected to industrial networks, enabling real-time data exchange, remote monitoring, and control. This connectivity facilitates centralized monitoring and management of multiple brake motors, improves system coordination, and enables predictive analytics for proactive decision-making. It also allows for seamless integration with other smart devices and systems, paving the way for advanced automation and optimization in manufacturing processes.
  • Condition Monitoring and Predictive Maintenance: Digital control systems in brake motors enable advanced condition monitoring and predictive maintenance capabilities. Sensors integrated into the motor can collect data on parameters such as temperature, vibration, and load conditions. This data is processed and analyzed in real-time, allowing for early detection of potential issues or performance deviations. By implementing predictive maintenance strategies, manufacturers can schedule maintenance activities more efficiently, reduce unplanned downtime, and optimize the lifespan and reliability of brake motors.
  • Energy Efficiency Optimization: Digital control systems provide enhanced opportunities for optimizing energy efficiency in brake motors. These systems can intelligently adjust motor parameters based on load demand, operating conditions, and energy consumption patterns. Advanced algorithms and control techniques optimize the motor's energy usage, reducing power wastage and maximizing overall energy efficiency. Digital control also enables integration with energy management systems, allowing for better monitoring and control of energy consumption across the entire manufacturing process.
  • Data Analytics and Machine Learning: The integration of digital control systems with brake motors opens up possibilities for leveraging data analytics and machine learning techniques. By collecting and analyzing large volumes of motor performance data, manufacturers can gain valuable insights into process optimization, fault detection, and performance trends. Machine learning algorithms can be applied to identify patterns, predict motor behavior, and optimize control strategies. This data-driven approach enhances decision-making, improves productivity, and enables continuous improvement in manufacturing processes.

In summary, emerging trends in brake motor technology include the adoption of digital control systems, intelligent motor control, network connectivity, condition monitoring, predictive maintenance, energy efficiency optimization, and data analytics. These trends are driving innovation in brake motor technology, improving performance, efficiency, and integration within manufacturing processes. As digital control becomes more prevalent, brake motors are poised to play a vital role in the era of smart manufacturing and industrial automation.

brake motor

What maintenance practices are essential for extending the lifespan of a brake motor?

Maintaining a brake motor properly is crucial for extending its lifespan and ensuring optimal performance. Regular maintenance practices help prevent premature wear, identify potential issues, and address them promptly. Here are some essential maintenance practices for extending the lifespan of a brake motor:

  • Cleanliness: Keeping the brake motor clean is important to prevent the accumulation of dirt, dust, or debris that can affect its performance. Regularly inspect the motor and clean it using appropriate cleaning methods and materials, ensuring that the power is disconnected before performing any cleaning tasks.
  • Lubrication: Proper lubrication of the brake motor's moving parts is essential to minimize friction and reduce wear and tear. Follow the manufacturer's recommendations regarding the type of lubricant to use and the frequency of lubrication. Ensure that the lubrication points are accessible and apply the lubricant in the recommended amounts.
  • Inspection: Regular visual inspections of the brake motor are necessary to identify any signs of damage, loose connections, or abnormal wear. Check for any loose or damaged components, such as bolts, cables, or connectors. Inspect the brake pads or discs for wear and ensure they are properly aligned. If any issues are detected, take appropriate action to address them promptly.
  • Brake Adjustment: Periodically check and adjust the brake mechanism of the motor to ensure it maintains proper braking performance. This may involve adjusting the brake pads, ensuring proper clearance, and verifying that the braking force is sufficient. Improper brake adjustment can lead to excessive wear, reduced stopping power, or safety hazards.
  • Temperature Monitoring: Monitoring the operating temperature of the brake motor is important to prevent overheating and thermal damage. Ensure that the motor is not subjected to excessive ambient temperatures or overloaded conditions. If the motor becomes excessively hot, investigate the cause and take corrective measures, such as improving ventilation or reducing the load.
  • Vibration Analysis: Periodic vibration analysis can help detect early signs of mechanical problems or misalignment in the brake motor. Using specialized equipment or vibration monitoring systems, measure and analyze the motor's vibration levels. If abnormal vibrations are detected, investigate and address the underlying issues to prevent further damage.
  • Electrical Connections: Regularly inspect the electrical connections of the brake motor to ensure they are secure and free from corrosion. Loose or faulty connections can lead to power issues, motor malfunctions, or electrical hazards. Tighten any loose connections and clean any corrosion using appropriate methods and materials.
  • Testing and Calibration: Perform periodic testing and calibration of the brake motor to verify its performance and ensure it operates within the specified parameters. This may involve conducting load tests, verifying braking force, or checking the motor's speed and torque. Follow the manufacturer's guidelines or consult with qualified technicians for proper testing and calibration procedures.
  • Documentation and Record-keeping: Maintain a record of all maintenance activities, inspections, repairs, and any relevant information related to the brake motor. This documentation helps track the maintenance history, identify recurring issues, and plan future maintenance tasks effectively. It also serves as a reference for warranty claims or troubleshooting purposes.
  • Professional Servicing: In addition to regular maintenance tasks, consider scheduling professional servicing and inspections by qualified technicians. They can perform comprehensive checks, identify potential issues, and perform specialized maintenance procedures that require expertise or specialized tools. Professional servicing can help ensure thorough maintenance and maximize the lifespan of the brake motor.

By following these essential maintenance practices, brake motor owners can enhance the lifespan of the motor, reduce the risk of unexpected failures, and maintain its optimal performance. Regular maintenance not only extends the motor's lifespan but also contributes to safe operation, energy efficiency, and overall reliability.

brake motor

How do brake motors ensure controlled and rapid stopping of rotating equipment?

Brake motors are designed to ensure controlled and rapid stopping of rotating equipment by employing specific braking mechanisms. These mechanisms are integrated into the motor to provide efficient and precise stopping capabilities. Here's a detailed explanation of how brake motors achieve controlled and rapid stopping:

1. Electromagnetic Brakes: Many brake motors utilize electromagnetic brakes as the primary braking mechanism. These brakes consist of an electromagnetic coil and a brake disc or plate. When the power to the motor is cut off or the motor is de-energized, the electromagnetic coil generates a magnetic field that attracts the brake disc or plate, creating friction and halting the rotation of the motor shaft. The strength of the magnetic field and the design of the brake determine the stopping torque and speed, allowing for controlled and rapid stopping of the rotating equipment.

2. Spring-Loaded Brakes: Some brake motors employ spring-loaded brakes. These brakes consist of a spring that applies pressure on the brake disc or plate to create friction and stop the rotation. When the power is cut off or the motor is de-energized, the spring is released, pressing the brake disc against a stationary surface and generating braking force. The spring-loaded mechanism ensures quick engagement of the brake, resulting in rapid stopping of the rotating equipment.

3. Dynamic Braking: Dynamic braking is another technique used in brake motors to achieve controlled stopping. It involves converting the kinetic energy of the rotating equipment into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. When the power is cut off or the motor is de-energized, the motor acts as a generator, and the electrical energy generated by the rotating equipment is converted into heat through the braking system. This dissipation of energy slows down and stops the rotation of the equipment in a controlled manner.

4. Control Systems: Brake motors are often integrated with control systems that enable precise control over the braking process. These control systems allow for adjustable braking torque, response time, and braking profiles, depending on the specific requirements of the application. By adjusting these parameters, operators can achieve the desired level of control and stopping performance, ensuring both safety and operational efficiency.

5. Coordinated Motor and Brake Design: Brake motors are designed with careful consideration of the motor and brake compatibility. The motor's characteristics, such as torque, speed, and power rating, are matched with the braking system's capabilities to ensure optimal performance. This coordinated design ensures that the brake can effectively stop the motor within the desired time frame and with the necessary braking force, achieving controlled and rapid stopping of the rotating equipment.

Overall, brake motors employ electromagnetic brakes, spring-loaded brakes, dynamic braking, and control systems to achieve controlled and rapid stopping of rotating equipment. These braking mechanisms, combined with coordinated motor and brake design, enable precise control over the stopping process, ensuring the safety of operators, protecting equipment from damage, and maintaining operational efficiency.

China supplier Ie1 Ie2 Ie3-100 Osjd Series Aluminum Casing 3pH DC Brake Electric Motor   vacuum pump diyChina supplier Ie1 Ie2 Ie3-100 Osjd Series Aluminum Casing 3pH DC Brake Electric Motor   vacuum pump diy
editor by CX 2024-04-25

China OEM CE Approved CHINAMFG Yej Series 2 Poles 37kw AC Electromagnetic Brake Three Phase Asychronoous Electric Motor vacuum pump oil

Product Description

Feature:
 
YEJ series motor electromagnetic brake is YEJ series improved products.Press national JB/T6456 to requirments design and manufacture of electrical properties and Y2 series motor is basically the same. This series motor is characterized by non-drag on the motor shaft end fitted with electromagnetic brake when the motor is de-energized,Electromagnetic brake is automatically after the motor cover lamination,friction braking torque,the motor stopped immediately,no-load braking time randon frame sizes from small to large,0.15-0.45S. Widely used in machine tools and transport machinery and packing,woodworking,printing,food,chemical,textile,construction,shops,rolling door machinery.

Rated Parameters
Base Center Height:63-255 mm                                   Power Range: 0.12-0.45 kW
Nsulation Class: B /f                                                   Protection Class: IP54 (or IP55)
Work System: S1                                                       Rated Voltage: 380V

Mounting Structure:

B3 Frame without foot cover end flange
B35 Frame with foot cover end flange
B5 Frame with foot cover end flange

 

  INSTALLATION SIZE AND OVERALL DILMENSION          
FRAME INSTALLATION SIZE OVERALL DIMENSIONS
IMB5 IMB14 IMB3
  A B C D E F G H K M N P S T M N P S T AB AC AD HD L
56 90 71 36 9 20 3 7.2 56 5.8 65 50 80 M5 2.5 98 80 120 7 3 110 120 110 155 195
63 100 80 40 11 23 4 8.5 63 7 75 60 90 M5 2.5 115 95 140 10 3 130 130 115 165 230
71 112 90 45 14 30 5 11 71 7 85 70 105 M6 2.5 120 110 160 10 3.5 145 145 125 185 225
80 125 100 50 19 40 6 15.5 80 10 100 80 120 M6 3 165 130 200 12 3.5 160 165 135 215 295
90S 140 100 56 24 50 8 20 90 10 115 95 140 M8 3 165 130 200 12 3.5 180 185 145 235 335
90L 140 125 56 24 50 8 20 90 10 115 95 140 M8 3 165 130 200 12 3.5 180 185 145 235 360
100L 160 140 63 28 60 8 24 100 12 130 110 160 M8 3.5 215 180 250 15 4 205 215 170 255 380
112M 190 140 70 28 60 8 24 112 12 130 110 160 M8 3.5 215 180 250 15 4 145 240 180 285 400
132S 216 140 89 38 80 10 33 132 12 165 130 200 M10 4 265 230 300 15 4 280 275 195 325 475
132M 216 178 89 38 80 10 33 132 12 165 130 200 M10 4 265 230 300 15 4 280 275 195 325 515
160M 254 210 108 42 110 12 37 160 15 / / / / / 300 250 350 19 5 325 325 255 385 600
160L 254 254 108 42 110 12 37 160 15 / / / / / 300 250 350 19 5 325 325 255 385 645
180M 279 279 121 48 110 14 42.5 180 15 / / / / / 300 250 350 19 5 355 380 280 455 700
180L 279 279 121 48 110 14 42.5 180 15 / / / / / 300 250 350 19 5 355 380 280 455 740

Type Output Rated speed Rated current η Power factor Locked-rotor current
Rated current
Locked-rotor torque
Rated troque
Pull-out torque
Rated torque
KW nN(rmp) IN(A) (%) (cos Φ) Tst/TN Ist/TN  
Asynchronous Speed 3000rpm(2 poles)
YEJ-711-2 0.37 2740 0.99 70 0.81 6.1 2.2 2.2
YEJ-712-2 0.55 2740 1.4 73 0.82 6.1 2.2 2.3
YEJ-801-2 0.75 2845 1.83 75 0.83 7.0 2.2 2.3
YEJ-802-2 1.1 2840 2.58 77 0.84 7.0 2.2 2.3
YEJ-90S-2 1.5 2840 3.43 79 0.84 7.0 2.2 2.3
YEJ-90L-2 2.2 2840 4.85 81 0.85 7.5 2.2 2.3
YEJ-100L-2 3 2860 6.31 83 0.87 7.5 2.2 2.3
YEJ-112M-2 4 2880 8.1 85 0.88 7.5 2.2 2.3
YEJ-132S1-2 5.5 2900 11.0 86 0.88 7.5 2.2 2.3
YEJ-132S2-2 7.5 2900 14.9 87 0.88 7.5 2.2 2.3
YEJ-160M1-2 11 2930 21.3 88 0.89 7.5 2.2 2.3
YEJ-160M2-2 15 2930 28.8 89 0.89 7.5 2.2 2.3
YEJ160L-2 18.5 2930 34.7 90 0.90 7.5 2.2 2.3
YEJ-180M-2 22 2940 41 90 0.90 7.5 2.0 2.3
YEJ-200L1-2 30 2950 55.5 91.2 0.90 7.5 2.0 2.3
YEJ-200L2-2 37 2950 67.9 97 0.90 7.5 2.0 2.3
YEJ-225M-2 45 2970 82.3 92 0.90 7.5 2.0 2.3

HangZhou CHINAMFG Pumps Co., Ltd. is a modern enterprise with a combination of development, production, service. It is specialized in producing electric pump and motor with more than 50 series and 1000 specifications.
Our company centers on people, equipped with a large technology team and management talent, forming significant human resource and powerful technology advantagement.

We own advanced electric pumps and assembly line for motors as well as online automatic testing systems. All these equipments supply favorable managing condition and reliable detecting methods. Our company has passed the ISO9001:2000 international quality system certification and "3C" electrician product certification. The products have won the producing licence granted by the national technical supervision bureau and "Agricultural Machinery popularization licence" granted by the national agriculture ministry.

Customers' satisfaction is the everlasting pursuit of "Qiantao" staff. Quality and credit standing is the forever main topic of Qiantao. We sincerely wish to cooperate and develop together with all partners. At the same time, we warmly welcome the new and old customers from home and abroad to do business with us and direct us.

At all times, CHINAMFG Pump Company is appling ourselves to normalized technology development and quality management construction. We constantly solidify, perfect and improve the company's total quality management standard. We also popularize ISO9000 quality management system. These not only uprise the management standard, promise the product quality, strengthen the running belief of "Customers' satisfaction is CHINAMFG people's persistent pursuit. Quality and credit standing is the forever main topic of Qiantao.", but also win the customers' trust. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Control
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

Can brake motors be used in conjunction with other motion control methods?

Yes, brake motors can be used in conjunction with other motion control methods to achieve precise and efficient control over mechanical systems. Brake motors provide braking functionality, while other motion control methods offer various means of controlling the speed, position, and acceleration of the system. Combining brake motors with other motion control methods allows for enhanced overall system performance and versatility. Here's a detailed explanation of how brake motors can be used in conjunction with other motion control methods:

  • Variable Frequency Drives (VFDs): Brake motors can be used in conjunction with VFDs, which are electronic devices that control the speed and torque of an electric motor. VFDs enable precise speed control, acceleration, and deceleration of the motor by adjusting the frequency and voltage supplied to the motor. By incorporating a brake motor with a VFD, the system benefits from both the braking capability of the motor and the advanced speed control provided by the VFD.
  • Servo Systems: Servo systems are motion control systems that utilize servo motors and feedback mechanisms to achieve highly accurate control over position, velocity, and torque. In certain applications where rapid and precise positioning is required, brake motors can be used in conjunction with servo systems. The brake motor provides the braking function when the system needs to hold position or decelerate rapidly, while the servo system controls the dynamic motion and positioning tasks.
  • Stepper Motor Control: Stepper motors are widely used in applications that require precise control over position and speed. Brake motors can be utilized alongside stepper motor control systems to provide braking functionality when the motor needs to hold position or prevent undesired movement. This combination allows for improved stability and control over the stepper motor system, especially in applications where holding torque and quick deceleration are important.
  • Hydraulic or Pneumatic Systems: In some industrial applications, hydraulic or pneumatic systems are used for motion control. Brake motors can be integrated into these systems to provide additional braking capability when needed. For example, a brake motor can be employed to hold a specific position or provide emergency braking in a hydraulic or pneumatic actuator system, enhancing safety and control.
  • Control Algorithms and Systems: Brake motors can also be utilized in conjunction with various control algorithms and systems to achieve specific motion control objectives. These control algorithms can include closed-loop feedback control, PID (Proportional-Integral-Derivative) control, or advanced motion control algorithms. By incorporating a brake motor into the system, the control algorithms can utilize the braking functionality to enhance overall system performance and stability.

The combination of brake motors with other motion control methods offers a wide range of possibilities for achieving precise, efficient, and safe control over mechanical systems. Whether it is in conjunction with VFDs, servo systems, stepper motor control, hydraulic or pneumatic systems, or specific control algorithms, brake motors can complement and enhance the functionality of other motion control methods. This integration allows for customized and optimized control solutions to meet the specific requirements of diverse applications.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here's a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

What industries and applications commonly use brake motors?

Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here's a detailed overview of the industries and applications commonly using brake motors:

1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.

2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.

3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.

4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.

5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.

6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.

7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.

8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.

9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.

These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.

China OEM CE Approved CHINAMFG Yej Series 2 Poles 37kw AC Electromagnetic Brake Three Phase Asychronoous Electric Motor   vacuum pump oil	China OEM CE Approved CHINAMFG Yej Series 2 Poles 37kw AC Electromagnetic Brake Three Phase Asychronoous Electric Motor   vacuum pump oil
editor by CX 2024-04-25

China wholesaler Yej Series 2 Poles AC Electromagnetic Brake Three Phase Asychronoous Electric Motor vacuum pump connector

Product Description

Feature:
 
YEJ series motor electromagnetic brake is YEJ series improved products.Press national JB/T6456 to requirments design and manufacture of electrical properties and Y2 series motor is basically the same. This series motor is characterized by non-drag on the motor shaft end fitted with electromagnetic brake when the motor is de-energized,Electromagnetic brake is automatically after the motor cover lamination,friction braking torque,the motor stopped immediately,no-load braking time randon frame sizes from small to large,0.15-0.45S. Widely used in machine tools and transport machinery and packing,woodworking,printing,food,chemical,textile,construction,shops,rolling door machinery.

Rated Parameters
Base Center Height:63-255 mm                                   Power Range: 0.12-0.45 kW
Nsulation Class: B /f                                                   Protection Class: IP54 (or IP55)
Work System: S1                                                       Rated Voltage: 380V

Mounting Structure:

B3 Frame without foot cover end flange
B35 Frame with foot cover end flange
B5 Frame with foot cover end flange

 

  INSTALLATION SIZE AND OVERALL DILMENSION          
FRAME INSTALLATION SIZE OVERALL DIMENSIONS
IMB5 IMB14 IMB3
  A B C D E F G H K M N P S T M N P S T AB AC AD HD L
56 90 71 36 9 20 3 7.2 56 5.8 65 50 80 M5 2.5 98 80 120 7 3 110 120 110 155 195
63 100 80 40 11 23 4 8.5 63 7 75 60 90 M5 2.5 115 95 140 10 3 130 130 115 165 230
71 112 90 45 14 30 5 11 71 7 85 70 105 M6 2.5 120 110 160 10 3.5 145 145 125 185 225
80 125 100 50 19 40 6 15.5 80 10 100 80 120 M6 3 165 130 200 12 3.5 160 165 135 215 295
90S 140 100 56 24 50 8 20 90 10 115 95 140 M8 3 165 130 200 12 3.5 180 185 145 235 335
90L 140 125 56 24 50 8 20 90 10 115 95 140 M8 3 165 130 200 12 3.5 180 185 145 235 360
100L 160 140 63 28 60 8 24 100 12 130 110 160 M8 3.5 215 180 250 15 4 205 215 170 255 380
112M 190 140 70 28 60 8 24 112 12 130 110 160 M8 3.5 215 180 250 15 4 145 240 180 285 400
132S 216 140 89 38 80 10 33 132 12 165 130 200 M10 4 265 230 300 15 4 280 275 195 325 475
132M 216 178 89 38 80 10 33 132 12 165 130 200 M10 4 265 230 300 15 4 280 275 195 325 515
160M 254 210 108 42 110 12 37 160 15 / / / / / 300 250 350 19 5 325 325 255 385 600
160L 254 254 108 42 110 12 37 160 15 / / / / / 300 250 350 19 5 325 325 255 385 645
180M 279 279 121 48 110 14 42.5 180 15 / / / / / 300 250 350 19 5 355 380 280 455 700
180L 279 279 121 48 110 14 42.5 180 15 / / / / / 300 250 350 19 5 355 380 280 455 740

Type Output Rated speed Rated current η Power factor Locked-rotor current
Rated current
Locked-rotor torque
Rated troque
Pull-out torque
Rated torque
KW nN(rmp) IN(A) (%) (cos Φ) Tst/TN Ist/TN Tmax/TN
Asynchronous Speed 3000rpm(2 poles)
YEJ-711-2 0.37 2740 0.99 70 0.81 6.1 2.2 2.2
YEJ-712-2 0.55 2740 1.4 73 0.82 6.1 2.2 2.3
YEJ-801-2 0.75 2845 1.83 75 0.83 7.0 2.2 2.3
YEJ-802-2 1.1 2840 2.58 77 0.84 7.0 2.2 2.3
YEJ-90S-2 1.5 2840 3.43 79 0.84 7.0 2.2 2.3
YEJ-90L-2 2.2 2840 4.85 81 0.85 7.5 2.2 2.3
YEJ-100L-2 3 2860 6.31 83 0.87 7.5 2.2 2.3
YEJ-112M-2 4 2880 8.1 85 0.88 7.5 2.2 2.3
YEJ-132S1-2 5.5 2900 11.0 86 0.88 7.5 2.2 2.3
YEJ-132S2-2 7.5 2900 14.9 87 0.88 7.5 2.2 2.3
YEJ-160M1-2 11 2930 21.3 88 0.89 7.5 2.2 2.3
YEJ-160M2-2 15 2930 28.8 89 0.89 7.5 2.2 2.3
YEJ160L-2 18.5 2930 34.7 90 0.90 7.5 2.2 2.3
YEJ-180M-2 22 2940 41 90 0.90 7.5 2.0 2.3
YEJ-200L1-2 30 2950 55.5 91.2 0.90 7.5 2.0 2.3
YEJ-200L2-2 37 2950 67.9 97 0.90 7.5 2.0 2.3
YEJ-225M-2 45 2970 82.3 92 0.90 7.5 2.0 2.3

HangZhou Qiantao Pumps Co., Ltd. is a modern enterprise with a combination of development, production, service. It is specialized in producing electric pump and motor with more than 50 series and 1000 specifications.
Our company centers on people, equipped with a large technology team and management talent, forming significant human resource and powerful technology advantagement.

We own advanced electric pumps and assembly line for motors as well as online automatic testing systems. All these equipments supply favorable managing condition and reliable detecting methods. Our company has passed the ISO9001:2000 international quality system certification and "3C" electrician product certification. The products have won the producing licence granted by the national technical supervision bureau and "Agricultural Machinery popularization licence" granted by the national agriculture ministry.

Customers' satisfaction is the everlasting pursuit of "Qiantao" staff. Quality and credit standing is the forever main topic of Qiantao. We sincerely wish to cooperate and develop together with all partners. At the same time, we warmly welcome the new and old customers from home and abroad to do business with us and direct us.

At all times, CHINAMFG Pump Company is appling ourselves to normalized technology development and quality management construction. We constantly solidify, perfect and improve the company's total quality management standard. We also popularize ISO9000 quality management system. These not only uprise the management standard, promise the product quality, strengthen the running belief of "Customers' satisfaction is CHINAMFG people's persistent pursuit. Quality and credit standing is the forever main topic of Qiantao.", but also win the customers' trust. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Control
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

Can brake motors be adapted for use in both indoor and outdoor environments?

Brake motors can indeed be adapted for use in both indoor and outdoor environments, provided they are appropriately designed and protected against the specific conditions they will encounter. The adaptability of brake motors allows them to function effectively and safely in diverse operating environments. Here's a detailed explanation of how brake motors can be adapted for use in both indoor and outdoor settings:

  • Indoor Adaptation: Brake motors intended for indoor use are typically designed to meet the specific requirements of indoor environments. They are often constructed with enclosures that protect the motor from dust, debris, and moisture commonly found indoors. These enclosures can be in the form of drip-proof (DP), totally enclosed fan-cooled (TEFC), or totally enclosed non-ventilated (TENV) designs. The enclosures prevent contaminants from entering the motor and ensure reliable and efficient operation in indoor settings.
  • Outdoor Adaptation: When brake motors are required for outdoor applications, they need to be adapted to withstand the challenges posed by outdoor conditions, such as temperature variations, moisture, and exposure to elements. Outdoor-rated brake motors are designed with additional protective measures to ensure their durability and performance. They may feature weatherproof enclosures, such as totally enclosed fan-cooled (TEFC) or totally enclosed non-ventilated (TENV) enclosures with added gaskets and seals to prevent water ingress. These enclosures provide effective protection against rain, snow, dust, and other outdoor elements, allowing the motor to operate reliably in outdoor environments.
  • Environmental Sealing: Brake motors can be equipped with environmental seals to further enhance their adaptability for both indoor and outdoor use. These seals provide an additional layer of protection against the entry of moisture, dust, and other contaminants. Depending on the specific application requirements, the seals can be applied to the motor's shaft, housing, or other vulnerable areas to ensure proper sealing and prevent damage or performance degradation due to environmental factors.
  • Corrosion Resistance: In certain outdoor environments or specific indoor settings with corrosive elements, brake motors can be designed with corrosion-resistant materials and coatings. These specialized materials, such as stainless steel or epoxy coatings, provide protection against corrosion caused by exposure to moisture, chemicals, or salt air. Corrosion-resistant brake motors are essential for ensuring long-term reliability and optimal performance in corrosive environments.
  • Temperature Considerations: Brake motors must be adapted to handle the temperature ranges encountered in both indoor and outdoor environments. For indoor applications, motors may be designed to operate within a specific temperature range, ensuring reliable performance without overheating. Outdoor-rated brake motors may have additional cooling features, such as oversized cooling fans or heat sinks, to dissipate heat effectively and operate within acceptable temperature limits. Heating elements can also be incorporated to prevent condensation and maintain optimal operating temperatures in outdoor or highly humid indoor environments.
  • IP Rating: In addition to the specific adaptations mentioned above, brake motors for both indoor and outdoor use are often assigned an Ingress Protection (IP) rating. The IP rating indicates the motor's level of protection against solid particles (first digit) and water ingress (second digit). The higher the IP rating, the greater the protection offered. IP ratings help users select brake motors that are suitable for their intended environment by considering factors such as dust resistance, water resistance, and overall environmental durability.

By incorporating appropriate enclosures, environmental seals, corrosion-resistant materials, temperature management features, and IP ratings, brake motors can be successfully adapted for use in both indoor and outdoor environments. These adaptations ensure that the motors are well-protected, perform reliably, and maintain their efficiency and longevity, regardless of the operating conditions they are exposed to.

brake motor

How does a brake motor enhance safety in industrial and manufacturing settings?

In industrial and manufacturing settings, brake motors play a crucial role in enhancing safety by providing reliable braking and control mechanisms. These motors are specifically designed to address safety concerns and mitigate potential risks associated with rotating machinery and equipment. Here's a detailed explanation of how brake motors enhance safety in industrial and manufacturing settings:

1. Controlled Stopping: Brake motors offer controlled stopping capabilities, allowing for precise and predictable deceleration of rotating machinery. This controlled stopping helps prevent abrupt stops or sudden changes in motion, reducing the risk of accidents, equipment damage, and injury to personnel. By providing smooth and controlled stopping, brake motors enhance safety during machine shutdowns, emergency stops, or power loss situations.

2. Emergency Stop Functionality: Brake motors often incorporate emergency stop functionality as a safety feature. In case of an emergency or hazardous situation, operators can activate the emergency stop function to immediately halt the motor and associated machinery. This rapid and reliable stopping capability helps prevent accidents, injuries, and damage to equipment, providing an essential safety measure in industrial environments.

3. Load Holding Capability: Brake motors have the ability to hold loads in position when the motor is not actively rotating. This load holding capability is particularly important for applications where the load needs to be securely held in place, such as vertical lifting mechanisms or inclined conveyors. By preventing unintended movement or drift of the load, brake motors ensure safe operation and minimize the risk of uncontrolled motion that could lead to accidents or damage.

4. Overload Protection: Brake motors often incorporate overload protection mechanisms to safeguard against excessive loads. These protection features can include thermal overload protection, current limiters, or torque limiters. By detecting and responding to overload conditions, brake motors help prevent motor overheating, component failure, and potential hazards caused by overburdened machinery. This protection enhances the safety of personnel and prevents damage to equipment.

5. Failsafe Braking: Brake motors are designed with failsafe braking systems that ensure reliable braking even in the event of power loss or motor failure. These systems can use spring-loaded brakes or electromagnetic brakes that engage automatically when power is cut off or when a fault is detected. Failsafe braking prevents uncontrolled motion and maintains the position of rotating machinery, reducing the risk of accidents, injury, or damage during power interruptions or motor failures.

6. Integration with Safety Systems: Brake motors can be integrated into safety systems and control architectures to enhance overall safety in industrial settings. They can be connected to safety relays, programmable logic controllers (PLCs), or safety-rated drives to enable advanced safety functionalities such as safe torque off (STO) or safe braking control. This integration ensures that the brake motor operates in compliance with safety standards and facilitates coordinated safety measures across the machinery or production line.

7. Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with industry-specific safety standards and regulations. These standards, such as ISO standards or Machinery Directive requirements, define the safety criteria and performance expectations for rotating machinery. By using brake motors that meet these safety standards, industrial and manufacturing settings can ensure a higher level of safety, regulatory compliance, and risk mitigation.

8. Operator Safety: Brake motors also contribute to operator safety by reducing the risk of unintended movement or hazardous conditions. The controlled stopping and load holding capabilities of brake motors minimize the likelihood of unexpected machine behavior that could endanger operators. Additionally, the incorporation of safety features like emergency stop buttons or remote control options provides operators with convenient means to stop or control the machinery from a safe distance, reducing their exposure to potential hazards.

By providing controlled stopping, emergency stop functionality, load holding capability, overload protection, failsafe braking, integration with safety systems, compliance with safety standards, and operator safety enhancements, brake motors significantly enhance safety in industrial and manufacturing settings. These motors play a critical role in preventing accidents, injuries, and equipment damage, contributing to a safer working environment and ensuring the well-being of personnel.

brake motor

What are the key components of a typical brake motor system?

A typical brake motor system consists of several key components that work together to provide controlled stopping and holding capabilities. These components are carefully designed and integrated to ensure the efficient operation of the brake motor. Here's a detailed explanation of the key components of a typical brake motor system:

1. Electric Motor: The electric motor is the primary component of the brake motor system. It converts electrical energy into mechanical energy to drive the rotation of the equipment. The motor provides the necessary power and torque to perform the desired work. It can be an AC (alternating current) motor or a DC (direct current) motor, depending on the specific application requirements.

2. Braking Mechanism: The braking mechanism is a crucial component of the brake motor system that enables controlled stopping of the rotating equipment. It consists of various types of brakes, such as electromagnetic brakes or spring-loaded brakes. The braking mechanism engages when the power to the motor is cut off or the motor is de-energized, creating friction or applying pressure to halt the rotation.

3. Brake Coil or Actuator: In brake motors with electromagnetic brakes, a brake coil or actuator is employed. The coil generates a magnetic field when an electrical current passes through it, attracting the brake disc or plate and creating braking force. The coil is energized when the motor is powered, and it de-energizes when the power is cut off, allowing the brake to engage and stop the rotation.

4. Brake Disc or Plate: The brake disc or plate is a key component of the braking mechanism. It is attached to the motor shaft and rotates with it. When the brake engages, the disc or plate is pressed against a stationary surface, creating friction and stopping the rotation of the motor shaft. The material composition and design of the brake disc or plate are optimized for efficient braking performance.

5. Control System: Brake motor systems often incorporate a control system that enables precise control over the braking process. The control system allows for adjustable braking torque, response time, and braking profiles. It may include control devices such as switches, relays, or electronic control units (ECUs). The control system ensures the desired level of control and facilitates the integration of the brake motor system with other machinery or automation systems.

6. Power Supply: A reliable power supply is essential for the operation of the brake motor system. The power supply provides electrical energy to the motor and the brake mechanism. It can be a mains power supply or a dedicated power source, depending on the specific requirements of the application and the motor's power rating.

7. Mounting and Housing: Brake motors are typically housed in a sturdy enclosure that protects the components from environmental factors, such as dust, moisture, or vibration. The housing also provides mounting points for the motor and facilitates the connection of external devices or machinery. The design of the mounting and housing ensures the stability and safety of the brake motor system.

8. Optional Accessories: Depending on the application, a brake motor system may include optional accessories such as temperature sensors, shaft encoders, or position sensors. These accessories provide additional functionality and feedback, allowing for advanced control and monitoring of the brake motor system.

These are the key components of a typical brake motor system. The integration and interaction of these components ensure controlled stopping, load holding, and precise positioning capabilities, making brake motors suitable for a wide range of industrial applications.

China wholesaler Yej Series 2 Poles AC Electromagnetic Brake Three Phase Asychronoous Electric Motor   vacuum pump connector	China wholesaler Yej Series 2 Poles AC Electromagnetic Brake Three Phase Asychronoous Electric Motor   vacuum pump connector
editor by CX 2024-04-17

China OEM Mini 42mm BLDC Motor with Electric Brake vacuum pump for ac

Product Description

Quiet, stable and reliable for long life operation
1.Diameters: 42mm
2.Lengths:  40.5mm;60.5mm;80.5mm
3.Continuous torques: 0.063Nm;0.125Nm;0.185Nm
4.Power: 26W/52W/77W
5.Speeds up to 4000rpm;4000rpm;4000rpm
6.Environmental conditions: -10~+40°C
7.Number of poles/phase:8/3
8.Mangnet material:Sintered NdFeB
9.Insulation class:B
10.Optional: electronic drivers, encoders and gearheads, as well as Hall effect resolver and sensorless feedback
11.We can design the special voltage and shaft, and so on

 

Model 42ZWX01 42ZWX02 42ZWX03
Voltage V 24
No load speed rpm 5000 5000 5000
Rated torque Nm 0.063 0.125 0.185
Rated speed rpm 4000 4000 4000
Rated current A 1.65 3.40  4.50 
Torque(max) Nm 0.189 0.375 0.500 
At Torque(max)Current A 4.4 9.0  11.5
Rotor inertia Kgmm² 5.2 9.3 13.4
Back-EMF constant V/krpm 3.17 3.13 3.28
Torque Constant Nm/A 0.045 0.044 0.047
Resistance(20ºC) ohm 1.42 0.73 0.39
Weight Kg 0.29 0.47 0.65
L1 mm 40.5 60.5 80.5
Rotor:La mm 20 40 60

Normal type of shaft

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Medical Equpiments
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Driving
Number of Poles: 8
Structure and Working Principle: Brushless
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

Can brake motors be used in conjunction with other motion control methods?

Yes, brake motors can be used in conjunction with other motion control methods to achieve precise and efficient control over mechanical systems. Brake motors provide braking functionality, while other motion control methods offer various means of controlling the speed, position, and acceleration of the system. Combining brake motors with other motion control methods allows for enhanced overall system performance and versatility. Here's a detailed explanation of how brake motors can be used in conjunction with other motion control methods:

  • Variable Frequency Drives (VFDs): Brake motors can be used in conjunction with VFDs, which are electronic devices that control the speed and torque of an electric motor. VFDs enable precise speed control, acceleration, and deceleration of the motor by adjusting the frequency and voltage supplied to the motor. By incorporating a brake motor with a VFD, the system benefits from both the braking capability of the motor and the advanced speed control provided by the VFD.
  • Servo Systems: Servo systems are motion control systems that utilize servo motors and feedback mechanisms to achieve highly accurate control over position, velocity, and torque. In certain applications where rapid and precise positioning is required, brake motors can be used in conjunction with servo systems. The brake motor provides the braking function when the system needs to hold position or decelerate rapidly, while the servo system controls the dynamic motion and positioning tasks.
  • Stepper Motor Control: Stepper motors are widely used in applications that require precise control over position and speed. Brake motors can be utilized alongside stepper motor control systems to provide braking functionality when the motor needs to hold position or prevent undesired movement. This combination allows for improved stability and control over the stepper motor system, especially in applications where holding torque and quick deceleration are important.
  • Hydraulic or Pneumatic Systems: In some industrial applications, hydraulic or pneumatic systems are used for motion control. Brake motors can be integrated into these systems to provide additional braking capability when needed. For example, a brake motor can be employed to hold a specific position or provide emergency braking in a hydraulic or pneumatic actuator system, enhancing safety and control.
  • Control Algorithms and Systems: Brake motors can also be utilized in conjunction with various control algorithms and systems to achieve specific motion control objectives. These control algorithms can include closed-loop feedback control, PID (Proportional-Integral-Derivative) control, or advanced motion control algorithms. By incorporating a brake motor into the system, the control algorithms can utilize the braking functionality to enhance overall system performance and stability.

The combination of brake motors with other motion control methods offers a wide range of possibilities for achieving precise, efficient, and safe control over mechanical systems. Whether it is in conjunction with VFDs, servo systems, stepper motor control, hydraulic or pneumatic systems, or specific control algorithms, brake motors can complement and enhance the functionality of other motion control methods. This integration allows for customized and optimized control solutions to meet the specific requirements of diverse applications.

brake motor

How does a brake motor enhance safety in industrial and manufacturing settings?

In industrial and manufacturing settings, brake motors play a crucial role in enhancing safety by providing reliable braking and control mechanisms. These motors are specifically designed to address safety concerns and mitigate potential risks associated with rotating machinery and equipment. Here's a detailed explanation of how brake motors enhance safety in industrial and manufacturing settings:

1. Controlled Stopping: Brake motors offer controlled stopping capabilities, allowing for precise and predictable deceleration of rotating machinery. This controlled stopping helps prevent abrupt stops or sudden changes in motion, reducing the risk of accidents, equipment damage, and injury to personnel. By providing smooth and controlled stopping, brake motors enhance safety during machine shutdowns, emergency stops, or power loss situations.

2. Emergency Stop Functionality: Brake motors often incorporate emergency stop functionality as a safety feature. In case of an emergency or hazardous situation, operators can activate the emergency stop function to immediately halt the motor and associated machinery. This rapid and reliable stopping capability helps prevent accidents, injuries, and damage to equipment, providing an essential safety measure in industrial environments.

3. Load Holding Capability: Brake motors have the ability to hold loads in position when the motor is not actively rotating. This load holding capability is particularly important for applications where the load needs to be securely held in place, such as vertical lifting mechanisms or inclined conveyors. By preventing unintended movement or drift of the load, brake motors ensure safe operation and minimize the risk of uncontrolled motion that could lead to accidents or damage.

4. Overload Protection: Brake motors often incorporate overload protection mechanisms to safeguard against excessive loads. These protection features can include thermal overload protection, current limiters, or torque limiters. By detecting and responding to overload conditions, brake motors help prevent motor overheating, component failure, and potential hazards caused by overburdened machinery. This protection enhances the safety of personnel and prevents damage to equipment.

5. Failsafe Braking: Brake motors are designed with failsafe braking systems that ensure reliable braking even in the event of power loss or motor failure. These systems can use spring-loaded brakes or electromagnetic brakes that engage automatically when power is cut off or when a fault is detected. Failsafe braking prevents uncontrolled motion and maintains the position of rotating machinery, reducing the risk of accidents, injury, or damage during power interruptions or motor failures.

6. Integration with Safety Systems: Brake motors can be integrated into safety systems and control architectures to enhance overall safety in industrial settings. They can be connected to safety relays, programmable logic controllers (PLCs), or safety-rated drives to enable advanced safety functionalities such as safe torque off (STO) or safe braking control. This integration ensures that the brake motor operates in compliance with safety standards and facilitates coordinated safety measures across the machinery or production line.

7. Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with industry-specific safety standards and regulations. These standards, such as ISO standards or Machinery Directive requirements, define the safety criteria and performance expectations for rotating machinery. By using brake motors that meet these safety standards, industrial and manufacturing settings can ensure a higher level of safety, regulatory compliance, and risk mitigation.

8. Operator Safety: Brake motors also contribute to operator safety by reducing the risk of unintended movement or hazardous conditions. The controlled stopping and load holding capabilities of brake motors minimize the likelihood of unexpected machine behavior that could endanger operators. Additionally, the incorporation of safety features like emergency stop buttons or remote control options provides operators with convenient means to stop or control the machinery from a safe distance, reducing their exposure to potential hazards.

By providing controlled stopping, emergency stop functionality, load holding capability, overload protection, failsafe braking, integration with safety systems, compliance with safety standards, and operator safety enhancements, brake motors significantly enhance safety in industrial and manufacturing settings. These motors play a critical role in preventing accidents, injuries, and equipment damage, contributing to a safer working environment and ensuring the well-being of personnel.

brake motor

Can you explain the primary purpose of a brake motor in machinery?

The primary purpose of a brake motor in machinery is to provide controlled stopping and holding of loads. A brake motor combines the functionality of an electric motor and a braking system into a single unit, offering convenience and efficiency in various industrial applications. Here's a detailed explanation of the primary purpose of a brake motor in machinery:

1. Controlled Stopping: One of the main purposes of a brake motor is to achieve controlled and rapid stopping of machinery. When power is cut off or the motor is turned off, the braking mechanism in the brake motor engages, creating friction and halting the rotation of the motor shaft. This controlled stopping is crucial in applications where precise and quick stopping is required to ensure the safety of operators, prevent damage to equipment, or maintain product quality. Industries such as material handling, cranes, and conveyors rely on brake motors to achieve efficient and controlled stopping of loads.

2. Load Holding: Brake motors are also designed to hold loads in a stationary position when the motor is not actively rotating. The braking mechanism in the motor engages when the power is cut off, preventing any unintended movement of the load. Load holding is essential in applications where it is necessary to maintain the position of the machinery or prevent the load from sliding or falling. For instance, in vertical applications like elevators or lifts, brake motors hold the load in place when the motor is not actively driving the movement.

3. Safety and Emergency Situations: Brake motors play a critical role in ensuring safety and mitigating risks in machinery. In emergency situations or power failures, the braking system of a brake motor provides an immediate response, quickly stopping the rotation of the motor shaft and preventing any uncontrolled movement of the load. This rapid and controlled stopping enhances the safety of operators and protects both personnel and equipment from potential accidents or damage.

4. Precision and Positioning: Brake motors are utilized in applications that require precise positioning or accurate control of loads. The braking mechanism allows for fine-tuned control, enabling operators to position machinery or loads with high accuracy. Industries such as robotics, CNC machines, and assembly lines rely on brake motors to achieve precise movements, ensuring proper alignment, accuracy, and repeatability. The combination of motor power and braking functionality in a brake motor facilitates intricate and controlled operations.

Overall, the primary purpose of a brake motor in machinery is to provide controlled stopping, load holding, safety in emergency situations, and precise positioning. By integrating the motor and braking system into a single unit, brake motors streamline the operation and enhance the functionality of various industrial applications. Their reliable and efficient braking capabilities contribute to improved productivity, safety, and operational control in machinery and equipment.

China OEM Mini 42mm BLDC Motor with Electric Brake   vacuum pump for ac	China OEM Mini 42mm BLDC Motor with Electric Brake   vacuum pump for ac
editor by CX 2024-04-17