China Best Sales 86mm 310V Low Speed High Torque Electrical BLDC Brushless DC Servo Motor for Machine Center vacuum pump diy

Product Description

I. CH MOTOR - NEMA 57 86mm Brushless DC BLDC Electric Motor Gearbox/Brake/Encoder/Controller 12V 2436V 48V 220V DC Servo Motor for Lawn Mower

Specifications:
-Rated Power: 220-660W
-Rated Voltage: 310V
-Current: 0.94-2.83A
-Number of Poles: 8
-Rated Speed: 3000RPM
-Rated Torque: 0.7-2.1N. M
-Peak Torque: 3.1-6.3N. M
-Length: 71-125mm
-Weight: 1.85-4Kg
-Encoder; 1000p/k

Drawing:

 

                                                                                  Specification
Model Rated power Rated voltage Current Number of poles Rated speed Rated torque Peek torque Moment constant Length Weight Encoder
W V A   rpm N. m N. m N. m/A mm Kg p/k
D866-07009 220 310 0.94 8 3000 0.7 2.1 0.74 71 1.85 1000
D866-14019 440 310 1.89 8 3000 1.4 4.2 0.74 100 2.6 1000
D866-21571 660 310 2.83 8 3000 2.1 6.3 0.74 125 4 1000

Factory Ability
I.CH is a professional motion control Enterprise, which established in 2006, we have more than 10 years experiences in the motion control area.
Our main products are hybrid stepper motor, stepping motor driver, integrated step servo motors, integrated stepper servo motors, DC Gear Motor, Brushless DC Motors and so on. Our products are widely used and applied in the following industries: semiconductor, textile, laser, woodworking, printing, advertising, clothing, marble and ceramic, robotics.
Our customers come from all around the world: European, America, Canada, Middle East, Asia and so on!
   

Advantages
1. Reliable supplier, direct manufacture 8 years;
2. CE, ROHS, IS09001... Certificate report;
3. OEM&OED Service, after-sales service 24*7, technical support;
4. Refunds or replacement in case of damaged by transportation;
5. 0.1% defect rate and 1 - 2 year guarantee period.

Package
-We choose best safe and strong packing method for your goods, or pack by your conditions;
-Shipping by Vessel, air or international express;
-Lead time is around 3 to 8 weeks.
 We can also supply other products,

                   Hybrid Stepper Motor                                                      Linear Stepper Motor                               
   

                   Stepper Geared Motor                                                        BLDC Motor

 

FAQ:

Q: What is the application for 86 size BLDC Servo Motor?
A: Medical Instruments Motor

Q: Can I use it on my AGV project?
A: Yes, we have done some AGV projects, we can help you with technical guidance.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Servo Motor
Number of Poles: 8
Structure and Working Principle: Servo Motor
Size: 86mm
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

How do brake motors handle variations in brake torque and response time?

Brake motors are designed to handle variations in brake torque and response time to ensure reliable and efficient braking performance. These variations can arise due to different operating conditions, load characteristics, or specific application requirements. Here's a detailed explanation of how brake motors handle variations in brake torque and response time:

  • Brake Design and Construction: The design and construction of brake systems in brake motors play a crucial role in handling variations in brake torque and response time. Brake systems typically consist of brake pads or shoes that press against a brake disc or drum to generate frictional forces and provide braking action. The materials used for the brake components, such as brake linings, can be selected or designed to offer a wide range of torque capacities and response characteristics. By choosing the appropriate materials and optimizing the brake system design, brake motors can accommodate variations in torque requirements and response times.
  • Brake Control Mechanisms: Brake motors employ different control mechanisms to manage brake torque and response time. These mechanisms can be mechanical, electrical, or a combination of both. Mechanical control mechanisms often utilize springs or levers to apply and release the brake, while electrical control mechanisms rely on electromagnets or solenoids to engage or disengage the brake. The control mechanisms can be adjusted or configured to modulate the brake torque and response time based on the specific needs of the application.
  • Brake Torque Adjustments: Brake motors may offer provisions for adjusting the brake torque to accommodate variations in load requirements. This can be achieved through the selection of different brake linings or by adjusting the spring tension or magnetic force within the brake system. By modifying the brake torque, brake motors can provide the necessary braking force to meet the demands of different operating conditions or load characteristics.
  • Response Time Optimization: Brake motors can be engineered to optimize the response time of the braking system. The response time refers to the time it takes for the brake to engage or disengage once the control signal is applied. Several factors can influence the response time, including the design of the control mechanism, the characteristics of the brake linings, and the braking system's overall dynamics. By fine-tuning these factors, brake motors can achieve faster or slower response times as required by the application, ensuring effective and timely braking action.
  • Electronic Control Systems: In modern brake motors, electronic control systems are often employed to enhance the flexibility and precision of brake torque and response time adjustments. These systems utilize sensors, feedback mechanisms, and advanced control algorithms to monitor and regulate the brake performance. Electronic control allows for real-time adjustments and precise control of the brake torque and response time, making brake motors more adaptable to variations in operating conditions and load requirements.

By combining appropriate brake design and construction, control mechanisms, torque adjustments, response time optimization, and electronic control systems, brake motors can effectively handle variations in brake torque and response time. This enables them to provide reliable and efficient braking performance across a wide range of operating conditions, load characteristics, and application requirements.

brake motor

What maintenance practices are essential for extending the lifespan of a brake motor?

Maintaining a brake motor properly is crucial for extending its lifespan and ensuring optimal performance. Regular maintenance practices help prevent premature wear, identify potential issues, and address them promptly. Here are some essential maintenance practices for extending the lifespan of a brake motor:

  • Cleanliness: Keeping the brake motor clean is important to prevent the accumulation of dirt, dust, or debris that can affect its performance. Regularly inspect the motor and clean it using appropriate cleaning methods and materials, ensuring that the power is disconnected before performing any cleaning tasks.
  • Lubrication: Proper lubrication of the brake motor's moving parts is essential to minimize friction and reduce wear and tear. Follow the manufacturer's recommendations regarding the type of lubricant to use and the frequency of lubrication. Ensure that the lubrication points are accessible and apply the lubricant in the recommended amounts.
  • Inspection: Regular visual inspections of the brake motor are necessary to identify any signs of damage, loose connections, or abnormal wear. Check for any loose or damaged components, such as bolts, cables, or connectors. Inspect the brake pads or discs for wear and ensure they are properly aligned. If any issues are detected, take appropriate action to address them promptly.
  • Brake Adjustment: Periodically check and adjust the brake mechanism of the motor to ensure it maintains proper braking performance. This may involve adjusting the brake pads, ensuring proper clearance, and verifying that the braking force is sufficient. Improper brake adjustment can lead to excessive wear, reduced stopping power, or safety hazards.
  • Temperature Monitoring: Monitoring the operating temperature of the brake motor is important to prevent overheating and thermal damage. Ensure that the motor is not subjected to excessive ambient temperatures or overloaded conditions. If the motor becomes excessively hot, investigate the cause and take corrective measures, such as improving ventilation or reducing the load.
  • Vibration Analysis: Periodic vibration analysis can help detect early signs of mechanical problems or misalignment in the brake motor. Using specialized equipment or vibration monitoring systems, measure and analyze the motor's vibration levels. If abnormal vibrations are detected, investigate and address the underlying issues to prevent further damage.
  • Electrical Connections: Regularly inspect the electrical connections of the brake motor to ensure they are secure and free from corrosion. Loose or faulty connections can lead to power issues, motor malfunctions, or electrical hazards. Tighten any loose connections and clean any corrosion using appropriate methods and materials.
  • Testing and Calibration: Perform periodic testing and calibration of the brake motor to verify its performance and ensure it operates within the specified parameters. This may involve conducting load tests, verifying braking force, or checking the motor's speed and torque. Follow the manufacturer's guidelines or consult with qualified technicians for proper testing and calibration procedures.
  • Documentation and Record-keeping: Maintain a record of all maintenance activities, inspections, repairs, and any relevant information related to the brake motor. This documentation helps track the maintenance history, identify recurring issues, and plan future maintenance tasks effectively. It also serves as a reference for warranty claims or troubleshooting purposes.
  • Professional Servicing: In addition to regular maintenance tasks, consider scheduling professional servicing and inspections by qualified technicians. They can perform comprehensive checks, identify potential issues, and perform specialized maintenance procedures that require expertise or specialized tools. Professional servicing can help ensure thorough maintenance and maximize the lifespan of the brake motor.

By following these essential maintenance practices, brake motor owners can enhance the lifespan of the motor, reduce the risk of unexpected failures, and maintain its optimal performance. Regular maintenance not only extends the motor's lifespan but also contributes to safe operation, energy efficiency, and overall reliability.

brake motor

How do brake motors ensure controlled and rapid stopping of rotating equipment?

Brake motors are designed to ensure controlled and rapid stopping of rotating equipment by employing specific braking mechanisms. These mechanisms are integrated into the motor to provide efficient and precise stopping capabilities. Here's a detailed explanation of how brake motors achieve controlled and rapid stopping:

1. Electromagnetic Brakes: Many brake motors utilize electromagnetic brakes as the primary braking mechanism. These brakes consist of an electromagnetic coil and a brake disc or plate. When the power to the motor is cut off or the motor is de-energized, the electromagnetic coil generates a magnetic field that attracts the brake disc or plate, creating friction and halting the rotation of the motor shaft. The strength of the magnetic field and the design of the brake determine the stopping torque and speed, allowing for controlled and rapid stopping of the rotating equipment.

2. Spring-Loaded Brakes: Some brake motors employ spring-loaded brakes. These brakes consist of a spring that applies pressure on the brake disc or plate to create friction and stop the rotation. When the power is cut off or the motor is de-energized, the spring is released, pressing the brake disc against a stationary surface and generating braking force. The spring-loaded mechanism ensures quick engagement of the brake, resulting in rapid stopping of the rotating equipment.

3. Dynamic Braking: Dynamic braking is another technique used in brake motors to achieve controlled stopping. It involves converting the kinetic energy of the rotating equipment into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. When the power is cut off or the motor is de-energized, the motor acts as a generator, and the electrical energy generated by the rotating equipment is converted into heat through the braking system. This dissipation of energy slows down and stops the rotation of the equipment in a controlled manner.

4. Control Systems: Brake motors are often integrated with control systems that enable precise control over the braking process. These control systems allow for adjustable braking torque, response time, and braking profiles, depending on the specific requirements of the application. By adjusting these parameters, operators can achieve the desired level of control and stopping performance, ensuring both safety and operational efficiency.

5. Coordinated Motor and Brake Design: Brake motors are designed with careful consideration of the motor and brake compatibility. The motor's characteristics, such as torque, speed, and power rating, are matched with the braking system's capabilities to ensure optimal performance. This coordinated design ensures that the brake can effectively stop the motor within the desired time frame and with the necessary braking force, achieving controlled and rapid stopping of the rotating equipment.

Overall, brake motors employ electromagnetic brakes, spring-loaded brakes, dynamic braking, and control systems to achieve controlled and rapid stopping of rotating equipment. These braking mechanisms, combined with coordinated motor and brake design, enable precise control over the stopping process, ensuring the safety of operators, protecting equipment from damage, and maintaining operational efficiency.

China Best Sales 86mm 310V Low Speed High Torque Electrical BLDC Brushless DC Servo Motor for Machine Center   vacuum pump diyChina Best Sales 86mm 310V Low Speed High Torque Electrical BLDC Brushless DC Servo Motor for Machine Center   vacuum pump diy
editor by CX 2024-05-07